

Distribution of Multimedia
Streams to Mobile Internet
Users

Cristian Hesselman

Enschede, The Netherlands, 2005

Telematica Instituut Fundamental Research Series, No. 014 (TI/FRS/014)

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands

Telematica Instituut Fundamental Research Series (also see: http://www.telin.nl/publicaties/frs.htm)
001 G. Henri ter Hofte, Working apart together: Foundations for component groupware
002 Peter J.H. Hinssen, What difference does it make? The use of groupware in small groups
003 Daan D. Velthausz, Cost-effective network-based multimedia information retrieval
004 Lidwien A.M.L. van de Wijngaert, Matching media: information need and new media choice
005 Roger H.J. Demkes, COMET: A comprehensive methodology for supporting telematics investment decisions
006 Olaf Tettero, Intrinsic information security: Embedding security issues in the design process of telematics systems
007 Marike Hettinga, Understanding evolutionary use of groupware
008 Aart T. van Halteren, Towards an adaptable QoS aware middleware for distributed objects
009 Maarten Wegdam, Dynamic reconfiguration and load distribution in component middleware
010 Ingrid J. Mulder, Understanding designers, designing for understanding
011 Robert J. Slagter, Dynamic groupware services: Modular design of tailorable groupware
012 Nikolay K. Diakov, Monitoring distributed object and component communication
013 Cheun Ngen Chong, Experiments in rights control expression and enforcement

Samenstelling promotiecommissie:
Voorzitter: prof.dr.ir. H. Brinksma (Universiteit Twente)
Secretaris: prof.dr.ir. A.J. Mouthaan (Universiteit Twente)
Promotor: prof.dr.ir. E. Huizer (Universiteit Twente)
Assistent promotoren: dr.ir. E.H. Eertink (Telematica Instituut)

dr.ir. I.A. Widya (Universiteit Twente)
Leden: prof.dr. F.M.T. Brazier (Vrije Universiteit Amsterdam)

prof.dr.ir. B.R.H.M. Haverkort (Universiteit Twente)
prof.dr.ir. I.G.M.M. Niemegeers (Technische Universiteit Delft)
prof.dr.ir. L.J.M. Nieuwenhuis (Universiteit Twente)
prof.dr. H. Schulzrinne (Columbia University, New York, USA)

ISSN 1388-1795; No. 014
ISBN 90-75176-70-8

Copyright © 2005, Telematica Instituut, The Netherlands
All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the copyright owner. No part of this publication
may be adapted in whole or in part without the prior written permission of the author.
Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
E-mail: info@telin.nl; Internet: http://www.telin.nl
Telephone: +31 (0)53-4850485; Fax: +31 (0)53-4850400

DISTRIBUTION OF MULTIMEDIA STREAMS TO
MOBILE INTERNET USERS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 20 mei 2005 om 15.00 uur

door

Cristian Engelbertus Wilhelmus Hesselman
geboren op 5 september 1970

te Hilversum

Dit proefschrift is goedgekeurd door: prof.dr.ir. E. Huizer (promotor), dr.ir. E.H. Eertink
(assistent-promotor) en dr.ir. I.A. Widya (assistent-promotor).

Abstract

In this thesis, we consider the efficient distribution of live and scheduled
multimedia content (e.g., radio and TV broadcasts) to mobile users via a
ubiquitous wireless Internet. The objective is to design and develop a
content delivery system that (1) enables content owners to deliver their
multimedia content to a large number of heterogeneous receivers, and (2)
enables receivers to continuously receive that content, independent of their
location and the network they connect to.

Previous investigations into this topic have shown that multimedia
content can be efficiently distributed through an overlay network that
consists of multiple distributed proxy servers. In this thesis, we extend this
concept to the distribution of live and scheduled multimedia content
through multiple aggregators. An aggregator is an intermediary content
provider that aggregates live multimedia content from various content
sources (e.g., news services) and delivers it to mobile users through a pool
of proxy servers. The availability of the same content through multiple
aggregators enables mobile users to switch from one aggregator to another,
thus alternately receiving the same content from different aggregators. The
service area of an aggregator may be restricted to a certain set of networks,
in which case switching to such an aggregator also requires mobile hosts to
handoff to a network that is part of the aggregator’s service area.

We call the system that switches a mobile host to another aggregator the
ALIVE system, which stands for Aggregator Switching System for Mobile
Receivers of Live Multimedia Streams. We concentrate on the ‘front-end’
of the ALIVE system, which supports mobile users and mobile hosts,
aggregators, and wireless networks. We particularly focus on the signaling
interactions between mobile hosts and aggregators and do not consider the
details of the multimedia content itself.

The design of the ALIVE system is based on the ALIVE business network,
which is a network of business roles (consisting of roles such as ‘aggregator’
and ‘end-user’) that describes the relations that may exist between domains

VI ABSTRACT

involved in the distribution of live multimedia content through multiple
aggregators. In line with current trends in content distribution, the ALIVE
business network consists of an application-level part (an overlay that
consists of content sources and aggregators) and a network-level part
(consists of providers of basic Internet access). We capture the properties
of the relations in the business network in so-called “agreements”.

The ALIVE business network uses the notion of a channel to refer to a
particular piece of content (e.g., a TV broadcast). To further increase the
number of potential receivers, aggregators in the ALIVE business network
are able to transmit channels in various configurations. A configuration
delivers a channel in a specific perceptual quality and requires a well-
defined level of resources (e.g., network bandwidth). Aggregators may
choose to support a relatively small number of configurations, thus striking
a balance between per-user personalization of a channel (e.g., by delivering
a channel in a configuration that is tailored to the instantaneous bandwidth
available to a specific user’s mobile host) and no personalization at all (i.e.,
everybody receiving a channel in the same configuration).

To support roaming users, aggregators establish application-level
roaming agreements between each other. These agreements enable users to
receive channels from multiple aggregators (e.g., at different locations)
while having a subscription with only a few of them (typically one).
Application-level roaming agreements define the configurations in which a
user can receive channels from an aggregator with which the user does not
have a subscription (called a foreign aggregator).

An aggregator may be bound to a specific set of networks through a so-
called “binding agreement” with Internet access providers. In the ALIVE
business network, such an aggregator is called a local aggregator because the
binding agreement restricts its service area to the networks of the involved
access provider. An Internet access provider may use local aggregators to
offer exclusive channels or channel configurations to the users that connect
to the access provider’s networks (cf. the walled-garden models that
contemporary cellular operators typically use).

The ALIVE system itself enables mobile users to roam in an unrestricted
manner while continuously receiving a channel. The system transparently
switches mobile hosts from one aggregator to another and executes
handoffs on the mobile host’s network interfaces. The system switches a
mobile host to the aggregator that provides a certain channel in the best
configuration, where ‘best’ is defined by the preferences of the end-user.
This makes the ALIVE system a user-centric system.

The ALIVE system is scalable because most of its logic resides on mobile
hosts (mobile-controlled switching). The system’s operation is policy-
controlled, which enables stakeholders in the ALIVE business network to

 ABSTRACT VII

flexibly change the rules that the ALIVE system uses to make decisions (e.g.,
when to look for another available configuration of a channel).

The ALIVE system contains an application-level protocol, which we
realized using the Session Initiation Protocol (SIP) and the Session
Description Protocol (SDP), both of which are Internet standards. We
deployed our implementation in a small-scale testbed with different types of
networks, which represent the ‘beyond 3G’ Internet environment in which
the ALIVE protocol is intended to operate.

Trough an analysis of our SIP-based implementation of the ALIVE
protocol, we obtained quantitative information on how to smoothly execute
switches between aggregators. Our analysis concentrates on the extra delay
introduced by the ALIVE protocol in a contemporary wireless Internet
environment, specifically consisting of 802.11 hotspots and UMTS/GPRS
overlays. We focus on the operation of the ALIVE protocol immediately
after a handoff to another 802.11 access provider, which is where the
ALIVE protocol typically comes into play. After a handoff, the ALIVE
system usually first attempts to discover the configurations in which the
user can receive a channel from the local aggregators on the new network.
At the edges of 802.11 cells, this may result is a significant delay because of
the exponential back-off mechanism that SIP uses to recover from packet
loss.

Our analysis consists of two parts: (1) a heuristic analysis of the
application and network-level delay components involved in a typical switch
and an estimation of their best-case values, and (2) an empirical analysis of
the delay introduced by SIP transactions under various 802.11 network
conditions. The analysis shows that the ALIVE system usually experiences
little delay, except at the very edge of an 802.11 cell.

Based on our implementation and measurement work, we conclude that
the ALIVE system is a feasible system that provides a clear contribution to
the multimedia-everywhere vision.

Acknowledgements

This thesis is the result of a little over five years of work. During that time, I
worked with quite a number of people and enjoyed their ideas, feedback,
and support. I’d like to mention a few of these people here.

Erik Huizer became my professor in early 2001 when I only knew that I
wanted to do ‘something’ with distributing multimedia streams in a
wireless/mobile Internet environment. Erik helped me to shape those ideas
and to focus my research, thus steering the whole endeavor toward what it
has become today.

Henk Eertink has been my primary advisor during the past five years.
Henk’s broad technical knowledge and continuous stream of ideas were
essential to my work. His enthusiasm and optimism were essential to my
motivation to complete it.

Ing Widya was my advisor when I did my Master’s and continued this
job during my Ph.D. studies. His high-quality feedback and his ability to
look at things from different angles greatly improved the quality of my work
as well as of this thesis.

Hans Zandbelt, Arjan Peddemors, and Remco Poortinga helped out
with the implementation of the system I built as well as with the many
problems that popped up during the experiments with the system. Roy
Arends provided the necessary support to configure the Telematica
Instituut’s lab network such that I could conduct my experiments.

Malohat Kamilova worked on the policy part of my research. Her
questions and comments forced me to reflect on the work I had done when
she started in late 2003 and clearly helped to improve and refine my work.

Erwin Fielt and Andrew Tokmakoff provided valuable feedback and
ideas, in particular during our weekly Friday nights in downtown Enschede.

Other people who supported me are Mortaza Bargh, Geert Heijenk,
Maarten Wegdam, Mark van Setten, Johan de Heer, and Margit Biemans.

X ACKNOWLEDGEMENTS

I also thank my parents Jo and Engelbert Hesselman for their
encouragements and interest. Final thanks go to my girlfriend Marloes
Kroeze for her support and for putting up with my techno talk.

Contents

CHAPTER 1 Introduction 1
1.1 Challenges and Objectives 2
1.2 Approach and Structure 3

CHAPTER 2 The ALIVE Business Network 7
2.1 Business Networks 7
2.2 Application-level Part: Content Distribution 10
2.3 Network-level Part: IP Connectivity 22
2.4 Cross-Level Part: Scoped Content Distribution 26
2.5 Related Work 27
2.6 Summary 28

CHAPTER 3 The ALIVE System 31
3.1 Overview 31
3.2 ALIVE Architecture 40
3.3 End-to-end Interactions 47
3.4 ALIVE Control Points and Services 54
3.5 ALIVE Policies 68
3.6 ALIVE Protocol 72
3.7 Implementation of the ALIVE Protocol 84
3.8 Related Work 95

CHAPTER 4 Analysis 103
4.1 Goal and Approach 103
4.2 Delay Components 105
4.3 Experiments 114
4.4 Measurement Set-up 117
4.5 Results 122

XII CONTENTS

4.6 Related Work 144

CHAPTER 5 Conclusions 147
5.1 Results 147
5.2 Contributions 150
5.3 Future Work 150

 Samenvatting 153

 References 157

Chapter 1

1. Introduction

The landscape of wireless and mobile networks has changed considerably
during the last decade. This holds for local personal area networks (like
Bluetooth or UWB), nomadic networks (for instance wireless LANs) and
mobile networks (such as GSM and UMTS). Figure 1-1 illustrates this
(taken from [MobileIT04]).

YearYear

10001000

100100

1010

11

0.10.1

1st Generation

Analog voice

2nd Generation
Digital voice &
Low rate data

0.010.01

2010

1990

2G+

2G

3G

3G+

4G

WLAN

Hi Speed

Super
Hi Speed

WLAN+

WLAN++

Generation

Mobile

Local

Nomadic

3rd Generation 4th Generation
ALL-Voice & High speed data

Multimedia

YearYear

10001000

100100

1010

11

0.10.1

1st Generation

Analog voice

1st Generation

Analog voice

2nd Generation
Digital voice &
Low rate data

2nd Generation
Digital voice &
Low rate data

0.010.01
2000 2005 2010 2015~

2G+

2G

3G

3G+

4G

1995

WLAN

Hi Speed

Super
Hi Speed

WLAN+

WLAN++

Generation

(Cellular)

Mobile

Local

Nomadic

3rd Generation 4th Generation
ALL-

4th Generation
ALL -IP Broadband

Ubiquitous & Seamless
Voice & High speed data

Multimedia

T
ransm

ission speed (m
ax; M

B
ps)

An important observation is that the advances in networking increase the
number of available networking technologies. For example, GSM and GPRS
technologies will not disappear once UMTS is rolled out, and neither will
802.11 networks when their 100 MBit/s successors become available.

At the same time, the capabilities of new generations of mobile devices
continue to increase as well [Rasmusson04]. There is a strong convergence
between mobile phones and computers, resulting in smart phones with

Figure 1-1.
Developments in
wireless and mobile
networks.

2 CHAPTER 1 INTRODUCTION

multimedia capabilities, and personal digital assistants with telephony
capabilities. Also, in the home the consumer electronics equipment and the
computer integrate. The prime example of this is the launch in 2004 of
Windows Media Center edition, a direct competitor of advanced consumer
electronics devices and TV sets.

These developments lead to a large number of new distribution channels
for providers of multimedia content. TV and radio channels, for instance,
can be broadcast over any Internet access technology instead of via
broadcast networks only.

This thesis must be read in the light of these trends and developments.
It focuses on the delivery of multimedia live and scheduled content to
mobile users.

1.1 Challenges and Objectives

In this thesis, we concentrate on the delivery of live and scheduled
multimedia content (e.g., radio or TV broadcasts) over a ubiquitous
Internet infrastructure consisting of different types of (wireless) access
networks. Since the capabilities of networks and mobile hosts typically vary
[Haardt00, Drew01], our first challenge is:

How can content providers deliver live multimedia content to a potentially large
number of mobile hosts that have varying capabilities and connect to the Internet
through different types of (wireless) networks?

One way to accomplish this is through an overlay network, which is usually
referred to as a content distribution network [Wee03, Plagemann03,
Day01]. For content distribution to mobile hosts, a few specific approaches
exist in which multimedia content is distributed through multiple
distributed proxy servers, with mobile hosts switching from one server to
another as a result of mobility (e.g., because different proxy servers serve
different networks) [Dutta02, Kim01, Roy02, Trossen03]. In this thesis, we
extend this concept to the distribution of live and scheduled multimedia
content through multiple aggregators. An aggregator is an access-controlled
intermediary service provider that aggregates live multimedia content from
content sources (e.g., cnn.com1) and delivers it to mobile users through a
pool of proxy servers. The availability of a the same content through
multiple aggregators enables mobile users to switch from one aggregator to
another, thus alternately receiving the same content from different
aggregators. The service area of an aggregator may be restricted to a certain

1 The domain names in this thesis are for illustrative purposes only.

 APPROACH AND STRUCTURE 3

set of networks, in which case a switch to such an aggregator also requires a
mobile host to handoff to a network that is part of the target aggregator’s
service area.

From the perspective of end-users, it is important that they continue to
receive a particular multimedia transmission despite switches between
aggregators and handoffs between networks. This is our second major
challenge:

How can mobile users seamlessly receive a multimedia transmission in a way they
consider best while they roam across different aggregators or access networks?

The objective of this thesis is to design a system that meets the challenges
outlined above. We call this system the ALIVE system, which stands for
Aggregator Switching System for Mobile Receivers of Live Multimedia
Streams.

Our work concentrates on the ‘front-end’ of the distribution network,
which consists of mobile users and mobile hosts, aggregators, and wireless
networks. We furthermore focus on the signaling interactions between
mobile hosts and aggregators and do not consider the specifics of the
multimedia content itself (e.g., in terms of packet forwarding, compression,
and packetization mechanisms).

1.2 Approach and Structure

We follow an approach that consists of three steps: the design of the ALIVE
business network (step 1), the design of the ALIVE system (step 2), and an
analysis of the ALIVE system (step 3). The ALIVE business network forms
the foundation of the ALIVE system.

Step 1: Design of the ALIVE Business Network
In step 1, we design the ALIVE business network. The ALIVE business
network is a network of business roles (e.g., consisting of roles such as
‘aggregator’ and ‘end-user’) that describes the relations that can exist
between domains involved in the distribution of live multimedia content to
mobile Internet users.

The key characteristic of the ALIVE business network is that it allows
content sources to distribute the same multimedia content via multiple
aggregators, which enables mobile users to receive that content from any of
these aggregators. The business network follows current trends in content
distribution in that it consists of an application-level part (with content
sources and aggregators) and a network-level part (with providers of
Internet access).

4 CHAPTER 1 INTRODUCTION

To maximize the number of potential receivers in a heterogeneous
environment, the aggregators in the ALIVE business network are able to
transmit content in various configurations. Different configurations typically
deliver the same content in different perceptual qualities and require
different amounts of resources (e.g., network bandwidth). The
configurations that an aggregator supports typically sample the
‘configuration spectrum’ in a course way, thus striking a balance between
one-configuration-for-all and individual per-user configurations (e.g., fine-
tuned to a user’s instantaneously available bandwidth).

The ALIVE business network captures the properties of the relations in
the business network in so-called agreements. The distinctive type of
agreement in the ALIVE business network is that of an application-level
roaming agreement, which is an agreement between two aggregators that
enables users of one aggregator to receive content from the other aggregator
without having an agreement (subscription) with that aggregator. An
application-level roaming agreement also defines in which configurations a
user can receive content from a foreign aggregator. Application-level
roaming agreements are similar to traditional network-level agreements,
except that they contain application-level information (mappings between
configurations) instead of information about network connectivity.

We discuss the ALIVE business network in Chapter 2 of this thesis.

Step 2: Design of the ALIVE System
In step 2, we design the ALIVE system. The goal of the ALIVE system is to
automatically switch mobile hosts to the best possible aggregator in ‘mid-
call’, where the user’s preferences define what constitutes ‘best’. Automatic
switching frees users from having to manually switch to another aggregator,
which enables them to make use of a multiple-choice environment in a
user-friendly manner [Kleinrock03, Latvakoski02, Satyanarayanan01]. This
is particularly important in a mobile environment where the set of available
aggregators can change as a result of user mobility (e.g., when a user roams
into a network where he can use new aggregators that are unavailable
outside that network).

The system design puts as much of the system’s responsibilities with the
mobile host as possible, which is in line with current Internet design
principles and makes the system scalable. An alternative solution is to put
the system’s responsibilities in access routers [Trossen03]. The advantage of
this approach is that it integrates with Mobile IP [Solomon98]; the
downside is that it requires a much more advanced and complex router
infrastructure.

The behavior of the ALIVE system is driven by policies, which enables
stakeholders in the ALIVE system/business network (e.g., users and
companies renting mobile hosts) to flexibly change the system’s behavior.

 APPROACH AND STRUCTURE 5

One of the components in the ALIVE system is the ALIVE protocol,
which is responsible for the interactions between mobile hosts and
aggregators. The ALIVE protocol is an application-level protocol that uses a
minimal number of interactions between mobile hosts and aggregators to
facilitate smooth switching. We implemented the ALIVE protocol using
standard Internet protocols, specifically the Session Initiation Protocol
(SIP) and the Session Description Protocol (SDP).

We discuss the design of the ALIVE business network in Chapter 3.

Step 3: Analysis of the ALIVE System
In step 3, we analyze the delay incurred by our implementation of the
ALIVE protocol (i.e., based on SIP). We focus on an environment with
802.11 hotspots, where the ALIVE protocol typically comes into play at the
edge of an 802.11 cell. At these edges, we experiment with the delays
introduced by the ALIVE protocol, which may be substantial as a result of
the exponential back-off retransmission scheme used by SIP to recover
from packet loss. Such delays may hinder smooth switching.

We discuss our analysis in Chapter 4.

Conclusions and Related Work
Chapter 5 provides conclusions and considers topics for future work.
Related work can be found at the end of each chapter.

Chapter 2

2. The ALIVE Business Network2

This chapter considers the design of the ALIVE business network. The ALIVE
business network is a network of business roles that describes the possible relations
between domains involved in the distribution of live and scheduled multimedia content
to mobile Internet users. The network revolves around the notion of an aggregator,
which is a role that receives live multimedia content from content sources (e.g.,
cnn.com) and forwards it to mobile users. The distinctive characteristic of the ALIVE
business network is that it allows the same content (e.g., ‘CNN TV’) to be
simultaneously distributed via multiple aggregators. This enables users to receive a
certain part of a live multimedia transmission from one aggregator at one point and
then switch to another aggregator to continue to receive the transmission from the new
aggregator. The ALIVE business network forms the foundation of the ALIVE system
(Chapter 3), which automatically switches a user’s mobile host to the best aggregator.

This chapter begins with a brief explanation of how we interpret the notion of a
business network (Section 2.1). Next, we discuss the ALIVE business network itself,
which consists of three parts: an application-level part that primarily deals with
content distribution (Section 2.2), a network-level part that focuses on transporting
IP packets (Section 2.3), and a cross-level part that ties these two levels together
(Section 2.4). The emphasis of our work is on the application and cross-level parts.
We conclude this chapter with a discussion on related work (Section 2.5) and a
summary (Section 2.6).

2.1 Business Networks

In this thesis, we think of a business network as a graph in which the nodes
are business roles (Section 2.1.1) and the edges are business relations (Section
2.1.2). Both of these concepts are inspired by the corresponding notions in
the TINA Business Model [TINA97].

2 This chapter is based on [Hesselman02], with updates from [Hesselman03] and
[Hesselman05].

8 CHAPTER 2 THE ALIVE BUSINESS NETWORK

2.1.1 Business Roles

The delivery of a (multimedia) service to end-users generally requires a
number of high-level activities such as ‘content generation’, ‘data transport’,
and ‘content play back’. A business role encompasses a subset of these
activities, which may be assigned to the business role for economical,
technical, or legislative reasons [TINA97]. Examples of business roles are
content providers, IP connectivity providers, terminal providers
[DOLMEN98], location owners, infrastructure owners [Verhoosel03], and
so forth.

Business Networks
A business network consists of a number of business roles. Each role in the
network is responsible for a certain part of the activities to deliver a service
to end-users. In this thesis, we assume that end-users are persons and not
organizations.

Figure 2-1 shows an example of a simple business network in which the
role ‘content provider’ is responsible for transmitting live multimedia
content to Internet users (1), and the role ‘access provider’ is responsible
for transporting content to and from the Internet backbone in the form of
IP packets (2, 3).

content
provider

user

access
provider(2) (3)

(1)

Internet
backbone

Figure 2-1 also shows that the grouping of activities into business roles can
be driven by different criteria. For example, the motivation to distinguish
content providers on the one hand and access providers on the other is
primarily a technical one (processing multimedia content is quit different
from transporting it). At the same time, the distinction is also economical:
it is very likely that content providers are willing to pay for the transport
services of access providers to increase the number of viewers of their
content.

Figure 2-1. Simple
example of a business
network.

 BUSINESS NETWORKS 9

Administrative Domains
An administrative domain is a set of computing and communications devices
(e.g., servers, routers, base stations, and so on) owned by a single
organization or person. An administrative domain plays one or more roles
and uses its devices to realize the activities associated with these roles. For
example, content providers use servers that enable clients to retrieve
(multimedia) content, and access and backbone providers use (sub) IP-level
devices (e.g., routers and base stations) to transport IP traffic.

Figure 2-2 shows an example of how the roles of the business network of
Figure 2-1 can be distributed across administrative domains, in this case
broadcast.com, access.com, and hotspot.nl.

content domain role

bobbroadcast.com access.com hotspot.nl

access
provider

content
provider

access
provider

Internet
backbone

In general, each domain can play one or more roles. For example, domain
hotspot.nl could also be a content provider, for instance by inserting local
ads into the multimedia content coming from broadcast.com (cf.
[Dutta02]). The examples in this thesis will however mostly involve
domains playing one role.

For simplicity, we only use domain names in this thesis. We do not
distinguish between a domain name (e.g., broadcast.com) and the owner of
that domain (which may be company X that also owns access.com).

2.1.2 Business Relationships

Business roles are connected into a business network by business
relationships. A business relationship is a user-provider relationship
[Halteren99, TINA97], which can for instance be of an economical nature
(end-users paying providers for their services) or of a technical nature (e.g.,
content providers making use of access providers) [TINA97]. The example
business network of Figure 2-1 involves three user-provider relationships:
one between the content provider and the end-user, one between the
content provider and the access provider (the content provider being the
user), and one between the end-user and the access provider.

A business relationship may be a bi-directional user-provider
relationship (e.g., a roaming relationship between two GSM access
providers), which is usually referred to as a federation [DOLMEN98].

Figure 2-2. Distribution
of roles across domains.

10 CHAPTER 2 THE ALIVE BUSINESS NETWORK

Agreements
We describe the properties of a business relationship in an agreement. An
agreement typically specifies which services the user role in the relationship
can receive from the provider role (e.g., at most 1 Mbps of best-effort
downstream connectivity). This may also include a pricing model and user
and provider obligations (e.g., the amount of up time), but these two topics
are outside the scope of this thesis.

In general, agreements can be established in many ways. They can for
instance be set up in an on-line or an off-line manner, or bilaterally or
through a broker [3GPP99]. In addition, agreements can exist for a ‘longer’
or a ‘shorter’ period of time (e.g., as long as a user receives a service from a
provider) [DOLMEN98]. In this thesis, we do not make any assumptions
on the way in which agreements are established or on how long they exist.
We abstract away from these issues by assuming that the agreements that
our model requires (see sections 2.2, 2.3, and 2.4) have already been
established.

2.2 Application-level Part: Content Distribution

Similar to other business networks (e.g., [TINA97, DOLMEN98,
Vernick01]), the ALIVE network consists of an application-level part and a
network-level part. This section discusses the application-level part of the
ALIVE business network, which consists of business roles that are
responsible for delivering live or scheduled multimedia content (e.g., a TV
broadcast) to mobile users over the Internet. The central notion is that of a
content aggregator, which is a business role that redistributes live multimedia
content (e.g., a TV broadcast) to mobile users.

We first discuss the application-level roles of the business network
(Section 2.2.1) and the relations that exist between them (Section 2.2.2).
After that, we briefly consider alternative types of business networks
(Section 2.2.3) and take a look at the notion of a configuration (Section
2.2.4), which is set of streams that carry a piece of multimedia content
using specific compression and packetization parameters. Next, we discuss
the application-level agreements of the ALIVE business network (Section
2.2.5).

2.2.1 Sources and Aggregators

The application-level roles of the ALIVE business network are those of a
content source and a content aggregator. Together, they deliver content
channels to mobile users. In this thesis, a content channel is the logical
content that end-users receive (e.g., ‘CNN TV’).

 APPLICATION-LEVEL PART: CONTENT DISTRIBUTION 11

Content Source
A content source (e.g., cnn.com) is the origin of one or more channels. In
this thesis, we assume that each channel originates at one source. A source
consists of one or more media servers.

Content Aggregator
The central role in the ALIVE business network is that of a content
aggregator. A content aggregator receives channels from sources and
redistributes them to mobile users. In general, it is possible to deliver
channels to mobile users through an aggregator hierarchy of depth h ≥ 1
(cf. the clusters of [Chawathe02]). To keep our business network simple,
we assume that h equals one in this thesis.

An aggregator typically transmits channels off a pool of media servers
(cf. [Chawathe02, Amir98]).

Users and Mobile Hosts
We assume that each user is logged onto one mobile host and that a mobile
host is used by one user. As a result, we use the terms mobile user and
mobile host interchangeably, unless the distinction is required.

2.2.2 Business Network

The ALIVE business network is organized such that (1) sources distribute
channels through aggregators and (2) users need to set up an agreement
with aggregators to be able to receive channels. We call this a portal type of
network since aggregators shield sources off from users. We refer to Section
2.2.3 for a discussion on alternative business network types (e.g., a pure
end-to-end model) and to Section 2.2.5 for the details on the contents of
the agreements between users and aggregators.

Multi-Aggregator Distribution
The distinctive characteristic of the ALIVE business network is that it allows
the same channel (e.g., CNN TV) to be simultaneously distributed via
multiple aggregators. This enables users to receive that content from one
aggregator at one point and then make a switch to receive the content from
another aggregator (e.g., when the current aggregator becomes unavailable
as a result of the user moving into another network). Application-level
roaming agreements between aggregators facilitate these switches in that
they enable users to receive content from multiple aggregators while having
a subscription (agreement) with only a few of them (typically one). We will
discuss the contents of these roaming agreements in Section 2.2.5.

Figure 2-3 shows a typical instance of the ALIVE business network in
which user Bob can receive channels CNN TV and BBC Radio through two

12 CHAPTER 2 THE ALIVE BUSINESS NETWORK

aggregators, stream-it.com and media-forward.nl. In this specific example,
Bob has an agreement with media-forward.nl, but receives CNN TV from
stream-it.com. This is possible because the two aggregators have set up an
application-level roaming agreement. Figure 2-3 shows that sources and
aggregators need to set up agreements as well. In the ALIVE business
network, these agreements define how aggregators can forward channels
(e.g., if they are allowed to transcode them to a lower quality). We will
discuss them in more detail in Section 2.2.5. Observe that Figure 2-3 does
not show Bob’s mobile host.

stream-it.com

media-forward.nl

cnn.com

bob@media-forward.nl

media server
source

aggregator
CNN TV

BBC Radio

bbc.co.uk

roam
ing agreem

ent

subscrip
tion

agreement

Pros and Cons for Sources
A source typically benefits from a portal type of business network because
aggregators increase the source’s scalability. This is particularly important
when the source has to serve a potentially large number of users, as is the
case in the ALIVE business network. Instead of unicasting a channel N
times to N mobile hosts, a source could for instance unicast them to a small
number of aggregators. Each of the aggregators would then forward the
channels to a subset of the N mobile hosts. This scheme reduces the load
on the source (it has fewer concurrent outstanding connections to deal
with) and will also reduce its bandwidth consumption because it does not
have to transmit N copies of the same channel. Both of these aspects
increase the scalability of the source [Rosenberg98].

IP Multicast can also reduce the number of concurrent connections that
a source has to deal with, for instance by multicasting a channel from a

Figure 2-3. Example use
of sources and
aggregators.

 APPLICATION-LEVEL PART: CONTENT DISTRIBUTION 13

source directly to receivers (e.g., [Wu97, McCanne96, Cheung96]), or by
using IP Multicast on the paths where it is available (e.g., between the
source and a number of aggregators). However, the usefulness of such
schemes depends on the availability of IP Multicast, which is limited at this
point [Chennikara02].

Reduced bandwidth consumption has the side effect that it typically also
reduces the source’s transit costs [Norton02a], which are the costs a source
has to pay to its local Internet connectivity provider to get its traffic
transported to the Internet. Transit costs usually depend on the number of
megabits per second (Mbps) that a source transmits [Norton02b].

Sources also benefit from aggregators because they can off-load certain
media processing tasks (e.g., transcoding) to them, which reduces the
sources’ resource requirements and thus increases their scalability [Gao03].
A proxy could for instance free a source from transcoding a channel in
HDTV quality down to a quality suitable for mobile hosts. Media processing
operations like transcoding have been studied extensively in the literature
(e.g., [Xu00, Amir95, Yeadon96, Balachandran97, Zenel97, Roy02]), but
specific media processing operations are outside the scope of this thesis.

Pros and Cons for Users
Users benefit from the existence of aggregators when a source
simultaneously distributes a channel via multiple aggregators (cf. [Roy02,
Dutta02, Trossen03]). In this case, users might be able to receive that
channel from more than one aggregator, which enables them to choose the
aggregator they consider the ‘best’ one (e.g., the one that delivers the
channel at the lowest price). This is in line with broader economical trends
that provide users with ever more options (e.g., multiple power and telco
providers).

At the same time, the availability of multiple aggregators also requires
users to actually deal with these aggregators, which is a task that might be
difficult [Kleinrock03, Latvakosi02]. This problem may be exacerbated by
roaming. For example, if a user is receiving a channel from an aggregator
that is bound to a certain network, then that user will have to find another
aggregator when he moves out of the network. A solution to this problem is
a system that can automatically switch a mobile host to another aggregator
while the user is receiving a channel. In Chapter 3, we will consider the
design and implementation of the ALIVE system, which realizes such
switches.

Another advantage for users is that aggregators typically offer multiple
channels, which enables users to get access to these channels by establishing
an agreement with only a small number of aggregators (typically one).
Without aggregators, users would have to set up an agreement with every
source from which they would want to receive a channel.

14 CHAPTER 2 THE ALIVE BUSINESS NETWORK

Aggregators from an Internet Perspective
There has been a lot of debate in the Internet engineering community (in
particular in the IETF) about the use of intermediaries such as the
aggregators we use in this thesis. The Internet Architecture Board (IAB)
recently issued an RFC [Floyd02] in which they state that proxies are
acceptable if their use is authorized by the content provider or the receiver
of the content. This requirements holds in the ALIVE business network as
users explicitly establish agreements with aggregators, which authorizes the
use of that aggregator. In addition, content providers (our sources) also
establish agreements with aggregators, which also authorizes the use of
intermediaries (aggregators) from the content provider’s perspective.

The IAB furthermore requires that intermediaries are explicitly
addressed at the IP layer. As we will see in Chapter 3, this is indeed the case
in the ALIVE system.

2.2.3 Alternative Business Networks

In general, users can set up an agreement with either sources or aggregators
and can then also receive a channel from either a source or an aggregator.
Figure 2-4 illustrates that this yields four types of distribution models:

– An end-to-end model, in which users receive channels from sources
and also have agreements with sources;

– A Content Distribution Network (CDN) model, in which a mobile
user has an agreement with a source (e.g., cnn.com), but receives
channels through an aggregator that the source has contracted (cf.
akamai.com). In this form of distribution, a mobile host sends a
request for a channel to a source. The source forwards the request to
an aggregator (the CDN), which routes the request [Cain03] to a
media server that is ‘close’ to the user (e.g., http://nearest-
server.akamai.com/CO231234), possibly in a resource-aware
manner [Xu00].

– A brokered model, in which a user sets up an agreement with an
aggregator, but receives channels from a source. In this case, the
aggregator basically acts as a broker (cf. the Broker role in TINA
[TINA97]) that merely enables users to look up channels from
contracted sources, for instance using an Electronic Program Guide
(EPG) on the user’s mobile host [Nomura03]; and

– A portal model, in which a user receives a channel from an
aggregator and also has an agreement with that aggregator. This is
the model that forms the basis of the ALIVE business network’s
organization (see Section 2.2.2).

 APPLICATION-LEVEL PART: CONTENT DISTRIBUTION 15

brokered

portal CDN

user has
agreement with

user receives
channel from

source

aggregator

aggregator source

end-to-end

Figure 2-5 shows an example of the end-to-end model (Figure 2-5a), the
CDN model (Figure 2-5b), the portal model (Figure 2-5c and Figure 2-3),
and the brokered model (Figure 2-5c).

bbc.co.uk

cnn.com

bob

(a)

bbc.co.uk

cnn.com

bob

(d)

bbc.co.uk

cnn.com

bob

(b)

bbc.co.uk

cnn.com

bob

(c)

media server

source
aggregator

channel
agreement

media server

source
aggregator

channel
agreement

Figure 2-4. Distribution
types.

Figure 2-5. Examples of
distribution types: end-
to-end (a), CDN (b),
portal (c), and brokered
(d).

16 CHAPTER 2 THE ALIVE BUSINESS NETWORK

Observe that the three models that involve an aggregator can also describe
the end-to-end model by co-locating a source and an aggregator (i.e., when
a domain is both a source and an aggregator). This makes the end-to-end
model a special case of the other three models.

2.2.4 Configurations

To maximize the number of potential receivers of a channel in a
heterogeneous environment, the sources and aggregators in the ALIVE
business network are able to transmit channels in various configurations. A
configuration delivers a channel in a certain form, for instance in terms of
perceptual quality (e.g., in terms of frame rate, pixels per frame, and colors
per pixel), costs, and resource requirements (e.g., in terms of the
processing capabilities that mobile hosts need to possess to receive a
channel in a certain configuration).

A configuration consists of set of multimedia streams with specific
compression and packetization parameters (e.g., in terms of a codec type, a
compression ratio, a sampling rate, and a packetization format) [Xu00,
Plagemann03] and is parameterized by the channel (i.e., the logical content)
the streams carry. As a result, we speak of a particular channel in a certain
configuration. Examples are CNN Radio in a 64 kbps MP3 audio
configuration, CNN Radio in a 32 kbps G722.1 audio configuration, and so
on. The packets of a multimedia stream are typically formatted according to
one of the profiles of the Real-time Transport Protocol (RTP)
[Schulzrinne96a, Schulzrinne96b].

Supported Configurations
Sources and aggregators each support their own configurations in which
they can potentially deliver channels to receivers. We call these a source’s
(aggregator’s) set of supported configurations:

A supported configuration is a configuration in which a source or an aggregator
can potentially deliver a channel to receivers.

In the rest of this thesis, we assume that the supported configurations of
aggregators are suitable for mobile hosts and wireless links (‘mobile-
friendly’ configurations), while this may be the case for the supported
configurations of sources. If a source’s supported configurations are mobile
friendly, then aggregators can simply reuse those configurations (i.e., the
supported configurations of the source and aggregator overlap).
Alternatively, aggregators could use a set of supported configurations that
completely differs from those of a source, for instance because the source’s
configurations are unsuitable for the typical processing capabilities of

 APPLICATION-LEVEL PART: CONTENT DISTRIBUTION 17

mobile hosts. Notice that mobile friendly configurations typically provide a
lower perceptual quality level than those that are not.

As will see in Section 2.2.5, supported configurations form the
foundation of the agreements in the ALIVE business network.

Personalization
We expect that the set of supported configurations of an aggregator
(source) will be relatively small (e.g., in the order of 10 to 20), thus
sampling the ‘configuration spectrum’ in a coarse way. The advantage of this
approach is that it increases the scalability of aggregators (sources) because
it limits the amount of per-user multimedia state (e.g., pointers to
multimedia files, transcoders, and so on) they have to maintain. The
downside is that users might receive a channel in a suboptimal configuration
given their quality and price preferences and the capabilities of their mobile
hosts. The network connection of a user could for instance provide some
extra bandwidth, but not enough to receive a channel in the next higher
configuration. The ALIVE business network thus strikes a balance between
offering a channel in a single configuration for everyone and using (a large
number of) configurations that are optimized for individual users and their
mobile hosts (e.g., fine-tuned to their instantaneously available bandwidth).

The above personalization problem also surfaces in the distribution of
multimedia channels through IP multicast. The problem here is that it is
difficult to multicast a multimedia channel in an optimal way to a
heterogeneous set of receivers. Some receivers may for instance experience
packet drops because they are sitting behind a (congested) link that cannot
handle the channel’s bandwidth level. Other receivers may be able to
receive the channel at a higher quality because they connect to the Internet
through a high-capacity congestion-free link. This problem can be alleviated
by using multiple multicast groups. Each multicast group could for instance
carry one layer of a layered encoder and receivers would then dynamically
add or drop layers by joining or leaving the appropriate multicast groups
(e.g., [McCanne96, Wu97]). Alternatively, the multicast groups could form
a hierarchy in which each multicast group distributes a channel at a specific
bandwidth level [Kouvelas98], or sources could simulcast a channel at
different bandwidth levels onto multiple multicast groups and then rely on
receivers to switch between these groups [Cheung96].

Switching versus Adaptation
When a user switches to receive a channel from another aggregator, it will
typically also receive the channel in another configuration. Since aggregators
usually sample the configuration spectrum in a course way (see
Personalization), the target configuration might provide a significantly

18 CHAPTER 2 THE ALIVE BUSINESS NETWORK

different perceptual quality. We therefore consider switching a coarse-grained
form of adaptation.

Course-grained adaptation is complementary to fine-grained adaptation
[Karrer01], which adapts the characteristics of an individual configuration.
An aggregator can for instance reduce the bandwidth that a channel
configuration requires by dropping video frames (e.g., [Yeadon96]).

In this thesis, we will leave fine-grained adaptation up to native
streaming technologies such as WindowsMedia and Real [Li02] and do not
consider it any further.

Configuration Categories
To market their configurations, aggregators can package their supported
configurations into groups, for instance based on the perceptual quality they
provide, on the network bandwidth they require, or on the amount of
battery power they require from receivers. In this thesis, we consider
groups of configurations that provide a similar perceptual quality. We refer
to them as quality categories. Quality categories are typically ordered [Xu00],
but the specifics of such orderings are outside the scope of this thesis.

Aggregators associate their categories with a user-oriented quality label
(e.g., ‘CD’ quality audio or ‘TV’ quality video). These quality labels are used
in agreements with users (see Section 2.2.5) and can also be used to
provide feedback on the quality level of the configuration in which a user
actually receives a channel. Quality labels can also be used in combination
with a pricing model. Different aggregators typically use different quality
labels.

Configuration Definition
In general, the properties of a configuration can be defined by a source, by
an aggregator, or by a standardization body. Standardized configurations
have the same properties (e.g., perceptual quality) across different sources
and aggregators. The grouping of configurations and their ordering could
also be subject of standardization. The way in which configurations are
defined is however outside the scope of this thesis.

2.2.5 Delivery, Roaming, and Forwarding Agreements

As we have seen in Section 2.2.2, the distribution of channels to mobile
hosts is governed by three types of agreements: agreements between users
and aggregators, agreements between aggregators, and agreements between
sources and aggregators. We refer to these three types of agreements as
delivery agreements, (application-level) roaming agreements, and
forwarding agreements, respectively. Each agreement typically comes with a

 APPLICATION-LEVEL PART: CONTENT DISTRIBUTION 19

pricing model, but accounting is a topic that lies outside the scope of this
thesis.

Delivery and Forwarding Agreements
Delivery and forwarding agreements contain descriptions of allowed
configurations, which are supported configurations (see Section 2.2.4) in
which a receiver (i.e., an aggregator or a user) is allowed to receive channels
from a sender (i.e., a source or an aggregator). That is,

An allowed configuration is a configuration in which a receiver (i.e., an aggregator
or a user) can receive channels from a sender (i.e., a source or an aggregator). An
allowed configuration must be a supported configuration of the sender and the
allowed configuration’s description must appear in the agreement between the
sender and the receiver.

The actual description of an allowed configuration may for instance be in
the form of its properties (e.g., its codec type, number of streams, and
required bandwidth) or in the form of a label that identifies the quality
category to which the configuration belongs (see Section 2.2.4).

Figure 2-6 (part of Figure 2-3) shows an example of a delivery agreement
between user Bob and aggregator media-forward.nl, as well as of delivery
agreements between cnn.com and the two aggregators (media-forward.nl
and stream-it.com). As we will see in Chapter 3, aggregators are responsible
for controlling access to their configurations, which involves the
authentication of users and mapping their identities to a set of allowed
configurations (authorization).

stream-it.com (F)

media-forward.nl (H)

cnn.com

bob@media-forward.nl

media serversource
aggregator

CNN TV

roam
ing agreem

ent

delivery

agreement

agreement

forwarding

agreement

forwarding
agreement

The difference between a forwarding agreement and a delivery agreement is
that a forwarding agreement also specifies how an aggregator should handle

Figure 2-6. Multi-
aggregator distribution,
including agreements.

20 CHAPTER 2 THE ALIVE BUSINESS NETWORK

a source’s channels. For example, a forwarding agreement could indicate if
a source permits an aggregator to redistribute a channel in a configuration
that differs from the one in which the aggregator receives the channel (e.g.,
by transcoding the original configuration to a low-bandwidth format), for
instance using the MPEG-21 Rights Expression Language [Wang04]. In the
rest of this thesis, we will however concentrate on the ‘front-end’ of the
ALIVE business network (aggregators and users), which means that
forwarding agreements are out of scope.

Home and Foreign Aggregators
From a user’s perspective, we distinguish home and foreign aggregators. A
home aggregator is an aggregator with which a user has a delivery agreement,
whereas a foreign aggregator is an aggregator with which a user does not have
such an agreement. In the example of Figure 2-6, media-forward.nl is Bob’s
home aggregator (marked with an ‘H’), while stream-it.com is a foreign
aggregator (marked with an ‘F’).

From an aggregator’s perspective we also distinguish foreign users, which
are users that do not have a delivery agreement with the aggregator.

Application-level Roaming Agreements
The home aggregators in the ALIVE business network establish application-
level roaming agreements with foreign aggregators to enable their users to also
receive channels via those foreign aggregators. For example, Bob’s home
aggregator media-forward.nl has a roaming agreement with foreign
aggregator stream-it.com (Figure 2-6) so that media-forward.nl’s users can
also receive channels from stream-it.com.

An application-level roaming agreement defines an equivalence
relationship between the supported configurations of the home aggregator
and those of the foreign aggregator. The equivalence relation may be based
on factors such as bandwidth, cost, or perceptual quality. Figure 2-7 shows
an example of an equivalence relation between the audio configurations of
aggregators media-forward.nl and stream-it.com. It for instance specifies
that 24 kbps G722.1 configuration of stream-it.com is equivalent to either
of the two G722.1 configurations of media-forward.nl (e.g., because they
provide about the same quality).

 APPLICATION-LEVEL PART: CONTENT DISTRIBUTION 21

G7221 32 kbps

G7221 24 kbps

GSM 13.2 kbps

CELP 6 kbps

G7221 32 kbpsG7221 32 kbps

G7221 24 kbpsG7221 24 kbps

GSM 13.2 kbpsGSM 13.2 kbps

CELP 6 kbpsCELP 6 kbps

MP3 64 kbps

G7221 32 kbps

G7221 24 kbps

CELP 6 kbps

MP3 64 kbpsMP3 64 kbps

G7221 32 kbpsG7221 32 kbps

G7221 24 kbpsG7221 24 kbps

CELP 6 kbpsCELP 6 kbps

roaming
agreement

supported configurations
of stream-it.com (F)

supported configurations
of media-forward.nl (H)

allowed configurations of
bob@media-forward.nl

allowed foreign
configurations of

bob@media-forward.nl at
stream-it.com

A delivery agreement and a roaming agreement together determine the set
of configurations in which a user is allowed to receive configurations from a
foreign aggregator. We therefore refer to this set as the user’s allowed foreign
configurations.

In the example of Figure 2-7, Bob’s delivery agreement with media-
forward.nl (his home aggregator) contains three allowed configurations.
The roaming agreement with stream-it.com reduces this set to two
configurations at stream-it.com, which are Bob’s allowed foreign
configurations at that aggregator.

Application-level roaming agreements are similar to network-level roaming
agreements (e.g., [Markoulidakis97, 3GPP99]), but they only address
application-level issues (i.e., equivalent configurations). Like a network-
level roaming agreement, an application-level roaming agreement does not
include user-specific information.

Multiple Sets of Allowed Configurations
In general, the total set of allowed configurations in which a user can
receive a channel may involve allowed configurations of different
aggregators. For example, the total set of allowed configuration in which
Bob can receive CNN TV (Figure 2-6) consists of allowed configurations of
media-forward.nl and of the allowed foreign configurations of stream-
it.com.

To actually deliver a channel to the user, it should somehow be possible
to select a configuration from these different sets of allowed configurations
in which the user will actually receive the channel. Figure 2-8 illustrates this.

Figure 2-7. Example of a
roaming agreement.

22 CHAPTER 2 THE ALIVE BUSINESS NETWORK

stream-it.com (F)

media-forward.nl (H)

bob

supported

supported

apply
roam

ing agreem
ent

thru delive
ry

agreement

thru delivery +

roaming agreement

allowed
foreign

allowed

set of configurationsset of configurations selectionselection

As we will see in Chapter 3, the ALIVE system can automatically select an
actual configuration for a particular user.

2.3 Network-level Part: IP Connectivity

The roles in the network-level part of the ALIVE business network provide
end-to-end IP connectivity to sources, aggregators, and users. Their
primary task is to transport IP packets from one Internet host to another.

In this section, we first discuss the network-level roles of the ALIVE
business network (Section 2.3.1) and take a look at how they are organized
(Section 2.3.2). After that, we discuss the network-level agreements
(Section 2.3.3).

2.3.1 Access Providers and Backbone Providers

At the network-level, we distinguish two roles: access providers and
backbone providers.

Access Provider
An access provider operates at the fringes of the Internet and provides first-
hop IP connectivity to users, aggregators, and sources (cf. the model of
[Rosenberg98]) at various bandwidth levels. Mobile users usually receive a
channel via one access provider, which is typically a wireless one. In general,

Figure 2-8.
Configuration selection
using multiple sets of
allowed configurations
at different aggregators.

 NETWORK-LEVEL PART: IP CONNECTIVITY 23

a single access provider can operate different types of (wireless) access
networks (e.g., 802.11, 802.16, or UMTS).

To limit the complexity of the ALIVE business network, we only require
access providers to deliver the standard best-effort packet delivery service.
We do not require them to possess special features like the ability to
provide Quality of Service (QoS) assurances [Xiao99] or to be able to
handle mobility (e.g., using Mobile IP [Solomon98]).

Backbone Provider
A backbone provider offers IP-level connectivity to access providers.
Backbone providers make up the Internet backbone and do not serve
mobile users, sources, or aggregators.

Scope
Since the focus of our work is on the front-end of the ALIVE business
network, we will not consider individual backbone providers in this thesis.
Instead, we will group them together in one ‘Internet backbone’ cloud.

2.3.2 Business Network

At the network-level, the ALIVE business network consists of access
providers that receive IP packets from the Internet backbone and deliver
them the hosts of mobile users, or vice versa. Users need to set up an
agreement with access providers to gain Internet access through one or
more of those providers’ networks.

Multiple Networks
In general, mobile users may be able to connect to the Internet through
multiple networks of multiple access providers. To remain connected to the
Internet, some sort of handoff system needs to transfer mobile hosts to
another network when they leave the coverage area of their current network
(e.g., [Solomon98, Wedlund99, Seneviratne98, Pollini96, Pahlavan00,
Tripathi98]). Roaming agreements between access providers facilitate these
handoffs in that they enable users to make use of networks of different
access providers while having a subscription (an agreement) with only a
small number of access providers [Verhoosel03, Markoulidakis97, 3GPP99]
(typically one). We will consider these network-level roaming agreements in
more detail in Section 2.3.3.

At certain locations, mobile hosts may be able to connect to multiple
networks simultaneously. This typically happens when a mobile user resides
in the coverage of two different types of networks (e.g., an 802.11 and a
UMTS network). Such networks usually have an overlay relationship with
each other, which means that one network also covers the coverage area of

24 CHAPTER 2 THE ALIVE BUSINESS NETWORK

the other [Stemm98, Brewer98]. To date, overlays typically involve a
UMTS network (the overlaying network) and an 802.11 ‘hotspot’ (the
overlayed network) [Køien03, Banerjee04, Zhuang03].

Figure 2-9 shows an example of an overlay situation combined with the
example aggregator infrastructure of Figure 2-6. In this specific example,
Bob’s mobile host can simultaneously connect to the 802.11 network of
hotspot.nl and to the UMTS network of connect-it.nl as long as Bob is
within the range of the 802.11 network. Figure 2-9 does not show the
access providers that the sources and the aggregators use to connect to the
Internet, nor does it show the interconnecting backbone providers.

media server
source

Internet cloud CNN TV

UMTS coverage area
802.11 coverage area

agreementaggregator

media server
source

Internet cloud CNN TV

UMTS coverage area
802.11 coverage area

agreementaggregator

stream-it.com (F)

media-forward.nl (H)

cnn.com

roam
ing agreem

ent

forwarding

agreement

forwarding

agreement

connect-it.nl
(UMTS)

hotspot.nl
(802.11)

bob@media-forward.nl

delivery

agreement

stream-it.com (F)

media-forward.nl (H)

cnn.com

roam
ing agreem

ent

forwarding

agreement

forwarding

agreement

connect-it.nl
(UMTS)

hotspot.nl
(802.11)

bob@media-forward.nl

delivery

agreement

Multiple Aggregators, Multiple Networks
The availability of multiple networks not only enables users to receive a
channel via multiple alternative aggregators, but also through multiple
alternative networks. As we will see in Chapter 3, the ALIVE system is able
to automatically switch between aggregators and handoff between networks.

2.3.3 Connectivity and Roaming Agreements

The agreements at the network-level are largely similar to those at the
application-level, except that they contain network-level information. In
this section, we only consider agreements between users and access
providers and agreements between access providers. We refer to them as
connectivity agreements and (network-level) roaming agreements,
respectively. The agreements between sources and access providers,
between aggregators and access providers, and between access providers

Figure 2-9. Instance of
the ALIVE business
network with access
providers and backbone
providers.

 NETWORK-LEVEL PART: IP CONNECTIVITY 25

and backbone providers are outside the scope of this thesis. We also do not
consider the pricing models that can be associated with the agreements.

Connectivity Agreements
A connectivity agreement between a user and an access provider allows the user
to send/receive IP packets to/from the access provider. It specifies which of
an access provider’s networks a user can access and which bandwidth levels
(upstream and downstream) that are available to that user on each of these
networks. We refer to the networks that appear in a connectivity agreement
as the user’s allowed networks for that specific access provider (e.g., Bob
could have a connectivity agreement with connect-it.nl that specifies that
the UMTS network is an allowed network). Similarly, we call the bandwidth
levels in such an agreement the user’s allowed bandwidth levels.

The set of allowed networks is a subset of an access provider’s set of
supported networks, while the set of allowed bandwidth levels is a subset of
an aggregator’s set of supported bandwidth levels. (Notice the similarity
with supported and allowed configurations at the application level.) The set
of supported bandwidth levels could for instance contain up to 31 multiples
of 64 kbps (cf. traditional ISDN networks), while the maximum allowed
bandwidth level for a particular user is only 128 kbps.

Home and Foreign Access Providers
A user typically establishes a connectivity agreement with one access
provider. We refer to this access providers as the user’s home access provider.
All other access providers are foreign access providers.

Roaming Agreements
A home access provider establishes roaming agreements with foreign access
providers to give its users access to the networks of the foreign access
providers. For example, if connect-it.nl is Bob’s home access provider, then
a roaming agreement between connect-you.nl and hotspot.nl would also
give Bob access to hotspot.nl’s 802.11 network.

A roaming agreement defines a mapping between the supported
networks and supported bandwidth levels of two access providers. For
example, the roaming agreement between connect-you.nl and hotspot.nl
could specify that the 64/16 kbps (downstream/upstream) supported
bandwidth level of media-forward.nl maps to the 512/64 kbps supported
bandwidth level of hotspot.nl.

The allowed bandwidth levels that a user can receive from a foreign
aggregator depends on the user’s connectivity agreement and the roaming
agreement between the foreign access provider and his home access
provider. (Notice the similarity with the delivery and roaming agreements at
the application level.)

26 CHAPTER 2 THE ALIVE BUSINESS NETWORK

2.4 Cross-Level Part: Scoped Content Distribution

The cross-level part of the ALIVE business network defines an optional
binding between the application-level and network-level parts. This binding
is established by means of agreements between aggregators and access
providers.

We first discuss the roles associated with the cross-level part (Section
2.4.1) and then discuss the binding agreements (Section 2.4.2).

2.4.1 Local and Global Aggregators

The cross-level part specializes aggregators into global and local aggregators.
A local aggregator is an aggregator whose service area is restricted to a
number of networks. This means that a user can only receive channels from
a local aggregator (in certain allowed configurations) if his mobile host
attaches to one of the networks that belong to the aggregator’s service area.
A user has to switch to another aggregator if he receives a channel from a
local aggregator and leaves that aggregator’s service area. In general, the
service area of a local aggregator may involve networks of different access
providers.

Contrary to a local aggregator, a global aggregator is available in the entire
Internet.

Figure 2-10 (an extension of the example of Figure 2-9) shows stream-
it.com as a local aggregator (marked with an ‘L’). Its service area is
restricted to the 802.11 network of hotspot.nl. Media-forward.nl is a global
aggregator (marked with a ‘G’) and is therefore available in the 802.11
network as well as in the UMTS network.

media server
source

Internet cloud CNN TV

UMTS coverage area
802.11 coverage area

agreementaggregator

media server
source

Internet cloud CNN TV

UMTS coverage area
802.11 coverage area

agreementaggregator

stream-it.com (F, L)

media-forward.nl (H, G)

cnn.com

roam
ing agreem

ent

forwarding

agreement

forwarding

agreement

connect-it.nl
(UMTS)

hotspot.nl
(802.11)

bob@media-forward.nl

delivery

agreement

binding agreement

Figure 2-10. Example of
global and local
aggregators.

 RELATED WORK 27

2.4.2 Binding Agreements

An aggregator and an access provider set up a binding agreement to define for
which of the access provider’s networks the aggregator acts as a local
aggregator. As a result of the agreement, the involved aggregator’s channels
and configurations are only accessible through the networks listed in the
agreement. The agreement between stream-it.com and hotspot.nl (Figure 2-
10) is an example of a binding agreement. It lists in which networks of
hotspot.nl stream-it.com acts as a local aggregator. In the example, this is
hotspot.nl’s 802.11 network.

An example of a practical situation in which binding agreements were
used is in the distribution of live broadcasts of the 2004 Olympic Games
over the Internet [Wired04]. In this particular case, the International
Olympic Committee (IOC) acted as the content source, national
broadcasting companies as aggregators, and ISPs as access providers. The
need for binding agreements arose when the IOC required the broadcasting
companies to ensure that (some of) the Olympic Games’ content would
only be delivered to receivers in the broadcasting companies’ home
countries (e.g., in the UK for the BBC). To accomplish this, the
broadcasting companies set up binding agreements with ISPs that were
known to only serve that type of users.

Besides networks, a binding agreement can for instance contain the type
of transport that an aggregator has to use to deliver channels via the access
provider’s networks and the access provider’s long-term traffic statistics
(e.g., the typical traffic load at a certain time of day).

2.5 Related Work

Business networks for the distribution of multimedia channels already exist
[Vernick01, TINA97, DOLMEN98], but as far as we know none of them
enable users to switch between different aggregators and receive channels in
different configurations. In addition, the systems that are similar to the
ALIVE system (e.g., [Dutta02, Trossen03, Roy02]) are often not based on a
particular business network. Even if they are, the business network does not
cover the agreements between the roles in the network. We refer to Section
3.8 for a detailed discussion on the differences between our business
network and the ones used by systems similar to the ALIVE system.

28 CHAPTER 2 THE ALIVE BUSINESS NETWORK

2.6 Summary

The ALIVE business model describes the possible relations that can exist
between domains that are involved in the distribution of multimedia
channels. The key characteristic of the business model is that it allows
content sources to distribute the same channel via multiple aggregators.
This enables mobile users to receive the same channel from multiple
alternative aggregators, which increases the users’ flexibility. At the same
time, the use of aggregators also offers scalability and cost advantages to
content sources. The costs of using (multiple) aggregators is that they
increase the complexity of the Internet infrastructure.

The users in the ALIVE business model typically set up a delivery
agreement (a subscription) with one aggregator, which frees them from
having to establish agreements with potentially many individual sources.
The distinctive agreement in the ALIVE business model is an application-
level roaming agreement, which is an agreement that aggregators establish
amongst each other to enable users to get access to multiple aggregators.
The aggregator with which a user established a delivery agreement is that
user’s home aggregator, while all other aggregators are foreign aggregators.

The aggregators in the ALIVE business network offer channels in
multiple configurations to serve different types of mobile hosts over
different types of networks. The configurations that an aggregator supports
typically provide different perceptual qualities and require different
amounts of resources (e.g., network bandwidth). The configurations in the
ALIVE business network typically sample the ‘configuration spectrum’ in a
course way, thus striking a balance between a one-configuration-for-all and
individual per-user configurations (e.g., fine-tuned to the user’s
instantaneously available bandwidth).

A delivery agreement defines in which configurations a user is allowed to
receive channels from his home aggregator. We call these configurations a
user’s allowed configurations. Roaming agreements define in which
configurations a user can receive channels from foreign aggregators, which
may differ from the configurations of the user’s home aggregator. As a
result, a user’s set of allowed configurations can differ from aggregator to
aggregator.

The application and network-level parts of the ALIVE business network
are largely independent of each other, except when an aggregator is linked
to an access provider through a binding agreement. A mobile host that
receives a channel through a local aggregator must switch to another
aggregator when it leaves its current aggregator’s service area.

In the rest of this thesis, we concentrate on the ‘front-end’ of the ALIVE
business network, in particular on its application-level part (i.e., aggregators
and users). We furthermore focus on the signaling interactions between

 SUMMARY 29

mobile hosts and aggregators and do not consider the specifics of the
multimedia content itself (e.g., in terms of packet forwarding, compression,
and packetization mechanisms).

Chapter 3

3. The ALIVE System3

This chapter discusses the design of the ALIVE system. The system’s key feature is
its ability to dynamically switch a mobile host to the aggregator that provides a
particular channel in the best configuration. The ALIVE system can execute these
switches automatically, thus hiding the complexity of the aggregator and network
infrastructure from end-users.

The ALIVE system is designed with scalability in mind because it has to be capable
of serving a large number of mobile receivers. This for instance means that the design
puts a large part of the system’s intelligence on mobile hosts, which is in line with
current Internet design principles. The ALIVE system includes an application-level
protocol, which we implemented using the Session Initiation Protocol (SIP) and the
Session Description Protocol (SDP).

Before delving into the details, we first provide an overview of the ALIVE system
(Section 3.1). After that, we consider the system’s architecture (Section 3.2), its end-
to-end interactions (Section 3.3), and internal organization (Section 3.4). Next, we
take a look at the policies used by mobile hosts to take switching decisions (Section
3.5) and consider the ALIVE protocol (Section 3.6) and its implementation (Section
3.7). We conclude this chapter with a comparison of the ALIVE system with similar
systems (Section 3.8).

3.1 Overview

This section provides an overview of the ALIVE system. We discuss the
system’s goal (Section 3.1.1) and the ways in which it should be able to
move mobile hosts between aggregators (Section 3.1.2). Next, we consider
the capabilities the system requires to automatically execute switches
(Section 3.1.3), and the non-functional properties it needs to possess
(Section 3.1.4).

3 This chapter is based on [Hesselman03], [Hesselman05], and [Kamilova05].

32 CHAPTER 3 THE ALIVE SYSTEM

3.1.1 Goal of the ALIVE System

The goal of the ALIVE system is to dynamically exploit the availability of
multiple alternative content aggregators in a user-friendly manner. To
accomplish this, the ALIVE system automatically switches mobile hosts to the
aggregator that provides a channel in the best configuration (e.g., the one
that provides the highest quality at a certain price) while they receive that
channel. As a result, mobile hosts alternately receive a channel from
different aggregators in different configurations (e.g., [Dutta02, Roy02,
Trossen03]). In this thesis, the meaning of the ‘best configuration’ is
defined by the end-user (e.g., [Kamilova05, Wang99]), who could for
instance consider the aggregator that provides the cheapest configuration of
a channel the best one.

Example
Figure 3-1 shows an example in which the ALIVE system switches Bob’s
mobile host to another aggregator while receiving channel CNN TV (the
example is an extension of Figure 2-11).

stream-it.com (F, L)

media-forward.nl (H, G)

cnn.com

connect-it.nl
(UMTS)

media server

aggregator
Internet cloud

channel (CNN TV)

UMTS coverage area
802.11 coverage area

hotspot.nl
(802.11)

agreement
begin reception

802.11 event

A

B
C

bob@media-forward.nl

source

Bob’s mobile host initially receives CNN TV from media-forward.nl via the
UMTS network of connect-it.nl (as of point A). However, when Bob roams
into the 802.11 network of hotspot.nl, the ALIVE system discovers that
stream-it.com can deliver CNN TV in a better configuration (e.g., because
Bob prefers its high quality configurations over those of media-forward.nl)
and therefore switches Bob’s mobile host to stream-it.com. As a result, Bob
receives CNN TV in one of stream-it.com’s configurations from that point
on. Since stream-it.com is only available in the 802.11 network, Bob’s
mobile host will receive CNN TV via its 802.11 interface. For the same

Figure 3-1. Roaming
scenario.

 OVERVIEW 33

reason, the ALIVE system switches the mobile host back to media-
forward.nl when Bob leaves the hotspot (point C).

3.1.2 Switches and Handoffs

As a result of the split-level business network of Chapter 2, the ALIVE
system must be able to independently switch a mobile host to another
aggregator or transfer it to another network. In this thesis, we reserve the
word switch(ing) for a change of aggregator, while we use the term handoff
for a change of network.

Switches
A switch from one aggregator to another requires the ALIVE system to
establish a streaming session with a media server of the target aggregator
and release the session with the current media server:

A switch between aggregators consists of the establishment of a streaming session
with a media server of the target aggregator and the release of the streaming
session with the current media server of the current aggregator.

In this definition, a session is an application-level streaming association
between a mobile host and a media server in which the media server
streams multimedia packets to the mobile host.

A switch between aggregators may involve the transfer of application-
level context information (e.g., the state of a predictive encoder) between
the aggregators’ media servers [Roy02, Trossen03], but this topic is outside
the scope of this thesis.

Switching Types
In general, the target aggregator of a switch can be another aggregator or
the aggregator from which the mobile host is already receiving a channel.
We refer to these switching types as inter-aggregator and intra-aggregator,
respectively. For intra-aggregator switches, we also distinguish inter-server
and intra-server switches. In the latter case, a mobile host switches to the
same media server of the same aggregator to receive a channel in another
configuration. This situation is comparable to standard end-to-end mobility
handling (e.g., using Mobile IP [Solomon98] or SIP [Wedlund99]) because
the mobile host only has to inform the media server of the mobile host’s
new IP address.

The ALIVE system should support all three types of switches, preferably
using the same mechanisms to keep the system as simple as possible. Our
examples will however focus on inter-aggregator switches.

34 CHAPTER 3 THE ALIVE SYSTEM

Handoffs
The ALIVE system hands a mobile host off to another network by
connecting it to one base station (e.g., an 802.11 base station) and
disconnecting it from another:

A handoff between networks consists of the establishment of a connection with a
target base station and the release of a connection with the current base station. A
handoff includes the establishment of IP connectivity, if necessary.

A connection in this case is an IP-level association between a mobile host
and the Internet.

Handoff Types
If the target base station of a handoff belongs to another network, the
mobile host will need to use another IP address to communicate via that
base station. A handoff to a base station of another network is usually
referred to as macro mobility, while handoffs between base stations that
belong to the same network are referred to as micro mobility [Campbell00].
Figure 3-2 shows how these handoff types can be combined with the
different types of switches.

handoff to

switch to

base station of
the same
network

another
aggregator

same server
of the same
aggregator

base station of
another
network

another server of
the same

aggregator

Handoffs can be further categorized in inter-tech handoffs and intra-tech
handoffs. A handoff is called an inter-tech handoff if the target base station
uses a different link-level protocol (a network technology) than the current
one [Brewer98, Stemm98, Hesselman01]. For example, a handoff from a
UMTS base station to an 802.11 base station is an inter-tech handoff. An
intra-tech handoff, on the other hand, involves two base stations that use
the same link-level protocol. Inter-tech handoffs usually require a mobile
host to use another IP address on the target network (macro mobility).

In this thesis, we relax the definition of an inter-tech handoff by not
requiring the ALIVE system to disconnect a mobile host from its current

Figure 3-2. Switching
and handoff types.

 OVERVIEW 35

base station. This enables mobile hosts to connect to multiple networks
simultaneously (e.g., to the UMTS network and the 802.11 network of
Figure 3-1), thus allowing them to exploit the availability of aggregators on
multiple networks.

Finally, the target base station in a handoff can belong to the same
access provider as the current one, or it can belong to another access
provider. Inter-access provider handoffs typically require a change of IP
address at the mobile host (macro mobility).

Macro mobility can be handled at the IP-level by protocols such as
Mobile IP [Solomon98] or one its derivatives (e.g., [Tan99, Helmy00]), at
the transport level [Snoeren00, Maltz98], at the ‘session level’
[Landfeldt99, Snoeren01], or at the application level [Wedlung99, Liao99].
Micro mobility can be handled at the level of a specific network technology
(e.g., 802.11 or GPRS) or at the IP-level [Ramjee99, Campbell00]. Specific
mobility handling mechanisms are however outside the scope of this thesis.

3.1.3 Automatic Switching

The ALIVE system must be able to automatically execute switches and
handoffs so that users do not have to deal with the different aggregators and
access providers they encounter [Kleinrock03, Latvakosi02]. The example
of Figure 3-1 illustrates that this requires the ALIVE system to be able to
automatically go through five high-level steps:
1. Detect events (e.g., the appearance of a new 802.11 network);
2. Decide if a particular event might require a switch;
3. If this is the case, discover in which configurations a user can potentially

receive a channel (e.g., CNN TV) from which aggregators;
4. Decide which configuration is the best one based on the user’s

preferences; and
5. Actually execute the switch.
Figure 3-3 summarizes this basic behavior as a finite state machine.

36 CHAPTER 3 THE ALIVE SYSTEM

AwaitingEvents
event / decion = Decide() [decision == discover] / ConfigDiscovery()

discoveryEnd / decision = Decide(userPrefs, resources, ...)

Switching

[decision == switch] / DoSwitch

switchComplete

[decision != switch]

[decision != discover]

Discoverin

Detecting Events
The ALIVE system executes switches in reaction to changes in the mobile
host’s environment. This means that the ALIVE system has to be able to
detect events that signal such changes. Examples of events are the
(dis)appearance of a network (e.g., an 802.11 network), a change in the
available battery power of a mobile host, and a user changing his
preferences (e.g., from ‘lowest price first’ to ‘highest quality first’).

Discovery Decisions
The decision to initiate discovery as a result of a change event generally
depends on various factors. For example, if the user prefers cheap
configurations, then the availability of a more expensive configuration at an
aggregator will typically not make the ALIVE system decide to initiate
discovery. However, if the battery power of the mobile host drops to a
critical level, then the ALIVE system might decide to initiate discovery to
quickly find an available configuration that requires less battery power.

Configuration Discovery
In an environment with multiple alternative aggregators, the ALIVE system
has to be able to discover in which configurations a user can receive a
certain channel from which aggregators. Since aggregators are access-
controlled, the ALIVE system must be able to (1) authenticate users to
check if they have access to a certain aggregator, and (2) authorize these
users to receive a channel in certain configurations. As we have seen in
Section 2.2.5, we refer to these configurations as a user’s allowed (foreign)
configurations. In general, a user’s set of allowed configurations depends on a

Figure 3-3. High-level
behavior of the ALIVE
system as a finite state
machine.

 OVERVIEW 37

delivery agreement and on any roaming agreements with the user’s home
aggregator (see Section 2.2.5). Authentication and authorization typically
also involves accounting [Calhoun03], but we will not consider accounting
in this thesis.

To determine which allowed configurations are actually available to a
particular user, the ALIVE system also needs to check for available
resources (e.g., the battery power of mobile hosts and the processing load
on media servers). We call these a user’s available configurations (for a certain
aggregator and channel):

An available configuration is an allowed configuration in which a user can actually
receive a particular channel from a certain aggregator.

Similar to allowed configurations, the total set of available configurations of
a particular user can consist of multiple sets of available configurations of
multiple aggregators (see Section 2.2.5). Figure 3-4 illustrates this. The
circles in Figure 3-4 represent sets of configurations at the two aggregators
of Figure 3-1.

stream-it.com (F)

media-forward.nl (H)

bob

allowed
foreign

supported

apply
roam

ing agreem
ent

av
ail

ab
le

thr
u

de
liv

ery
 ag

ree
men

t

available thru delivery

+ roaming agreement

available
foreign

available

actual

supported

allowed

aggregator perspective selectionuser perspectiveaggregator perspective selectionuser perspective

Figure 3-4. Multiple sets
of available
configurations at
multiple aggregators.

38 CHAPTER 3 THE ALIVE SYSTEM

As for available bandwidth, the ALIVE system only checks the maximum
MAC level capacity (e.g., 11, 5.5, 2, or 1 Mbps for 802.11b networks) and
does not measure the instantaneously available bandwidth. This limits the
complexity of the system, but implies that the ALIVE system as a whole
provides a best-effort service.

Observe that the ALIVE system may need to execute a handoff to
discover available configurations on a network that the mobile host
currently does not connect to. For example, if Bob were to roam from the
802.11 network of hotspot.nl into the 802.11 network of another provider,
the ALIVE system would first need to execute a handoff on the 802.11
interface of Bob’s mobile host before it can discover available configurations
on the target network. In a situation like this, the ALIVE system also needs
to discover the available local aggregators on the target network and perhaps
discover their capabilities (e.g., if they automatically report the availability
of new configurations).

In the future, software radios [Moessner02] might make handoffs during
configuration discovery unnecessary. The ALIVE system could for instance
use one of a mobile host’s physical interfaces to continuously discover
available configurations on different types of networks, while at the same
time using another physical interface to actually receive a channel. This
would enable the ALIVE system to discover configurations ‘in the
background’ and only execute handoffs as a result of an actual switch. The
use of software radios is however outside the scope of this thesis.

Switching Decisions
The ALIVE system has to decide (1) which aggregator can deliver a channel
in the best available configuration, (2) which of that aggregator’s media
servers will deliver the channel in that configuration, and (3) how the switch
needs to be executed (e.g., in a make-before-break manner by first
establishing a streaming session with one of the target aggregator’s media
servers and then tearing down the session with the media server of the
current aggregator).

Another requirement is that users and other stakeholders (e.g., the
owner of the mobile host or its manufacturer) should be able to flexibly
change the rules based on which the ALIVE system makes discovery and
switching decisions. It should be possible to change these rules while the
system is in operation, so that the entire system can remain ‘always on’. For
example, being able to change the ALIVE system’s switching rules enables
mobile users to change their preferences. It also allows the owner of a pool
of mobile hosts to control the resources these hosts consume for aggregator
switching (e.g., by not allowing the ALIVE system to execute switches in a
make-before-break manner, which is usually more expensive because it uses
more resources).

 OVERVIEW 39

In this thesis, we concentrate on the discovery and switching rules that
define the behavior of mobile hosts and aggregators. We do not consider
the rules that define the operation of access providers (e.g., when they
admit users to their networks).

Executing a Switch
Switches in the ALIVE system can take place in two ways: in a make-before-
break manner or in a break-before-maker manner. In a make-before-break
switch, the ALIVE system first establishes a multimedia streaming session
between the mobile host and the target media server of the target
aggregator, and then releases the session between the mobile host and the
current media server. This is similar to make-before-break handoffs in
mobile networks, which for instance occur in overlay situations [Stemm98,
Brewer98, Hesselman01]. In a break-before-make switch, the ALIVE
system first releases the session with the current media server and then
establishes the session with the target media server. Break-before-make
handoffs for instance occur in 802.11 networks [DeCleyn04].

The result of a switch is that a mobile host receives a channel in the best
available configuration, possibly via another network than before the switch
(cf. the example of Figure 3-1). We call this available configuration the
actual configuration:

An actual configuration is the best available configuration and is the configuration
in which a mobile host actually receives a particular channel.

Initial and Final Switches
To begin the playout of a particular channel at a mobile host, the ALIVE
system has to perform an initial switch, which is a switch from a ‘null’
aggregator to an initial target aggregator. Similarly, to terminate a channel
the ALIVE system needs to switch a host from its current aggregator to a
‘null’ target aggregator. In this thesis, we will however not consider these
switches. Instead, we will assume that a mobile host is already receiving a
channel before a switch and will continue to do so after the switch.
Applications like Electronic Program Guides (cf. the Mbone tool sdr
[SDR]) that enable a user to select a channel are therefore outside the
scope of this thesis as well.

3.1.4 Non-Functional Requirements

The design of the ALIVE system is based on three non-functional
requirements:

40 CHAPTER 3 THE ALIVE SYSTEM

– The system should be able to switch a mobile host to another
aggregator before the mobile host runs out of multimedia packets to
render. As a result, switches will take place in a smooth manner (i.e.,
without glitches), thus hiding them from the user. To achieve this
goal, the ALIVE should for instance perform certain tasks in parallel,
for example the discovery of available configurations on different
networks and the discovery of new aggregators on these networks;

– The system should minimize the amount of control information
transferred to and from mobile host to save bandwidth, which is
generally scarce in a wireless environment; and

– The system should be scalable. In our work, scalable means that the
amount of inter-aggregator traffic and the authentication load on
home aggregators should be minimized (cf. [Rosenberg98]).
Following Internet design principles [Saltzer84, Clark88], it also
means that aggregators should maintain the minimum possible
amount of state. As a result, a large part of the system’s intelligence
will reside on mobile hosts.

3.2 ALIVE Architecture

Figure 3-5 shows the high-level architecture of the ALIVE system
superimposed on the example of Figure 3-1. The architecture’s main
functional components are switching controllers on mobile hosts, signaling
front-ends at aggregators, and aggregator directories at access providers. Note
that Figure 3-5 represents access providers as IP clouds rather than radio
coverage areas (cf. Figure 3-1).

stream-it.com
(F, L)

media-forward.nl
(H, G)

bob

switch at
point B

signaling association
RTP streams

hotspot.nl

connect-it.nl

sources

front-end

aggregator
directory

switching
controller

Figure 3-5. High-level
system architecture
superimposed on the
example of Figure 3-1.

 ALIVE ARCHITECTURE 41

The rest of this section provides an overview of the ALIVE system
architecture. We first consider the architectures of mobile hosts (Section
3.2.1), aggregators (Section 3.2.2), and access providers (Section 3.2.3).
After that, we take a look at the signaling associations between the switching
controllers of mobile hosts, the front-ends of aggregators, and the
aggregator directories of access providers (Section 3.2.4). The interactions
that take place on these signaling associations are the subject of Section 3.3.

3.2.1 Host Architecture

Figure 3-6 shows the architecture of the mobile hosts in the ALIVE system.
The host’s switching controller is the center of the architecture. Switching
controllers typically interact with multiple front-ends (Section 3.2.2) and
multiple aggregator directories (Section 3.2.3).

playout
buffer

playout
buffer

switching controller

HCI

user

mobile host

resource
manager

preferences
manager

IF1

IF2

IFn

playerplayer

aggregator
directory

front-end

access
providers

aggregators

channelchannel
control infocontrol info

Switching Controller
In the ALIVE system, most of the responsibilities for automatic switching
lie with the switching controllers, which means that they go through the five
high-level steps of Section 3.1.3. As a result, the switches in the ALIVE
system are mobile-controlled (cf. mobile-controlled handoffs between
networks [Tripathi98]). The advantage of mobile-controlled switching is
that it moves most of the system logic to the mobile host, which is in line
with current Internet design principles [Clark88, Saltzer84]. The mobile
host is furthermore a natural place to control switches because it is typically
aware of the aggregators it can reach from a particular location. An
alternative approach is to off-load parts of the switching controller’s
functions to aggregators. For example, the part of the switching controller

Figure 3-6. Architecture
of mobile hosts in the
ALIVE system.

42 CHAPTER 3 THE ALIVE SYSTEM

responsible for making switching decisions (e.g., when to discovery available
configurations and which aggregator will provide the actual configuration)
could be located at an aggregator, while the rest of an switching controller’s
functions could remain at the mobile host (cf. network-assisted handoffs
[Tripathi98]). This approach requires the switching controller to upload
certain information that allows the aggregator to make these decisions, such
as the available processing power on the mobile host, and available codecs
and session control protocols [Xu00]. Such an approach may be
advantageous for resource constrained mobile hosts, but it requires
aggregators to deal with switches for a potentially large number of mobile
hosts. In addition, it may be difficult to have a single front-end decide on an
actual configuration in an environment with multiple aggregators.

Observe that a switching controller is a cross-layer component because it
is responsible for executing switches (at the application-level) and for
executing handoffs (at the network-level).

Information Sources
A switching controller uses several information sources to detect changes in
the mobile host’s environment (e.g., the availability of a new network on a
certain interface) and to make decisions (e.g., to decide which available
configuration a user prefers). In this thesis, we distinguish five information
sources:

– A local resource manager, which keeps track of the available local
resources on the mobile host (e.g., battery power and available
codecs);

– A preferences manager, which manages the user’s preferences (e.g.,
regarding quality and costs);

– Network interfaces (e.g., 802.11 and UMTS interfaces) through which
the switching controller interacts with front-ends and through which
the mobile host actually receives a channel. A network interface also
keeps track of information such as the networks currently available
on an interface, their signal strengths, and so on;

– Front-ends (remote sources), which enable the switching controller to
discover the available configurations in which a user can receive a
particular channel (see Section 3.2.2); and

– Aggregator directories (remote sources), which enable switching
controllers to discover which local aggregators are available through a
certain network (see 3.2.3).

In general, the switching controller can regularly poll these components for
changes or it can wait for them to push such changes to it. For example, a
switching controller can actively poll a front-end for it available
configurations, or it can simply wait for the front-end to generate a
notification that signals a change (through a configuration notification

 ALIVE ARCHITECTURE 43

message). Of course, the latter requires front-ends to have the capability to
generate configuration notifications.

In this thesis, we only use the information provided by the local resource
manager, the preferences manager, and the network interfaces. We do not
consider the internals of these components.

Multimedia Components
The other components on a mobile host deal with multimedia streams:

– A multimedia player that depacketizes, decompresses, and renders the
multimedia information in a multimedia stream. The player also
provides an interface to the user than enables him to control the
playout of a channel (e.g., pause, stop, change quality); and

– A playout buffer. The playout buffer receives multimedia packets from
the network and temporarily stores them to ensure that it can
continue to feed information to the player when the packets of a
multimedia stream are lost [Karrer01] or delayed [Li02]. Since the
ALIVE system is about one-way streaming, the delay buffer can be
quite deep (e.g., approximately 45 seconds for RealPlayer [Li02]).
The buffer typically stores RTP packets [Schulzrinne96a].

The details of the player and the playout buffer are outside the scope of
this thesis.

3.2.2 Aggregator Architecture

Figure 3-7 shows the architecture of an aggregator. The main component is
a front-end. A front-end typically interacts with multiple switching
controllers.

front-endfront-end

users

switching
controller

Front-end
The main task of a front-end is to enable switching controllers to discover a
user’s available configurations for a particular channel. To accomplish this, a
front-end’s task in the ALIVE system is to:

– Authenticate mobile users;
– Authorize a user to receive a channel in a certain set of allowed

configurations (see Section 2.2.5). For foreign users, this is the set of
allowed foreign configurations, which is based on the user’s delivery

Figure 3-7. Architecture
of aggregators in the
ALIVE system.

44 CHAPTER 3 THE ALIVE SYSTEM

agreement with his home aggregator and the roaming agreement
between the home and the foreign aggregator;

– Decide which of a user’s allowed configurations are actually available.
This for instance depends on the available resources on the
aggregator’s media servers and on the policies of the aggregator (e.g.,
e.g., a policy that limits the availability of high-end configurations to
off-rush hour periods); and

– Decide on a set of media servers from which the aggregator can
deliver a channel in an available configuration.

Centralized versus Distributed Front-ends
The ALIVE system uses centralized front-ends. The advantage of this
approach is that mobile hosts can get the information they need from an
aggregator at a single point, which reduces the number of interactions
between mobile hosts and aggregators. The disadvantage is that the front-
end might form a single point of failure and that it can potentially become
an aggregator’s bottleneck if it is not dimensioned well (e.g., if it is not
replicated across multiple machines).

An alternative approach is to distribute a front-end across multiple
machines. In the most extreme case, a front-end could be fully distributed
across an aggregator’s media servers without any inter-media server
synchronization (cf. [Amir98]). In a unicast environment, this would mean
that a mobile hosts might need to communicate with many front-ends,
especially when the host can reach multiple aggregators from its current
location. This results in increased bandwidth consumption because mobile
hosts need to send out more requests and because different front-ends of
the same aggregator may report the availability of the same configuration.
Another problem with this approach is that different front-ends might
attempt to authenticate the same foreign user, which would increase the
load on home aggregators and would decrease scalability.

A fully distributed approach might be more viable in an IP multicast
environment. In that case, a mobile host could for instance use an
aggregator-specific multicast group to simultaneously interact with multiple
front-ends of the same aggregator. A technique like multicast damping
[Amir98] could then suppress duplicate responses from front-ends that
include the same available configuration. IP multicast does however not
match the user-specific nature of a user’s set of available configurations and
is not very widespread at this point [Chennikara02].

3.2.3 Access Provider Architecture

The most relevant component of an access provider for the ALIVE system is
the aggregator directory. An aggregator directory enables switching

 ALIVE ARCHITECTURE 45

controllers to discover which local aggregators they can reach through a
certain access provider. All access providers that have a binding agreement
with one or more aggregators (see Section 2.4.2) operate an aggregator
directory.

3.2.4 Signaling Associations

The ALIVE system involves several signaling associations (see Figure 3-5). A
switching controller has signaling associations with front-ends, media
servers, and aggregator directories, while front-ends are also involved in
signaling associations with other front-ends.

Switching Controllers – Front-ends
The purpose of the signaling association between a switching controller and
a front-end is to enable the switching controller to retrieve a description of
the available configurations in which a user can receive a channel. The
signaling association also allows the switching controller to authenticate a
user with the front-end and to retrieve a description of the front-end’s
capabilities. We refer to Section 3.3 for a discussion on the interactions that
take place on this signaling association.

Switching Controllers – Media Servers
The purpose of the signaling associations between switching controllers and
media servers is to execute a switch. The signaling association enables
switching controllers to establish a streaming session with a media server of
the target aggregator and to release the streaming session with the current
media server (see Section 3.1.2).

The advantage of direct signaling paths between switching controllers
and media servers is that it simplifies front-ends. For example, front-ends
do not need to act as proxies that establish or release a multimedia session
between a media server and a mobile host on behalf of the switching
controller. This would require front-ends to be more intelligent, which goes
against the design goals of Section 3.1.4.

However, turning front-ends into signaling proxies enables a front-end
to act as a signaling gateway, for instance by translating SIP and
WindowsMedia messages from mobile hosts into RTSP messages that the
media servers require. This will enable aggregators to serve a heterogeneous
population of mobile hosts with a homogeneous pool of servers. This is also
the disadvantage of the direct signaling paths between switching controllers
and media servers in the ALIVE system: it requires aggregators to operate a
heterogeneous pool of media servers (e.g., with RTSP, SIP, Real, and
WindowsMedia servers) to be able to serve different types of mobile hosts,
some of which might only be able to deal with one type of media server.

46 CHAPTER 3 THE ALIVE SYSTEM

We refer to Section 3.3 for a discussion on the interactions that take
place on the signaling associations between switching controllers and media
servers.

Switching Controllers – Aggregator Directories
The goal of the signaling association between a switching controller and an
aggregator directory is to enable the switching controller to discover the
local aggregators that are available through a certain network. The result
typically consists of a set of URIs that point to the front-ends of the local
aggregators.

In this thesis, we assume that the interactions on this signaling
association take the form of DHCP messages [Droms99, Vatn98] and that
aggregator directories use a DHCP option to convey the URIs of local
aggregators to the switching controller (e.g., using the DHCP option for
SIP URIs [Schulzrinne02]). Alternative protocols that can be used are the
Service Location Protocol (SLP) [Guttman99] or the telephony gateway
location protocol discussed in [Rosenberg98].

Front-ends – Front-ends
The purpose of the associations between front-ends is to enable aggregators
to authenticate foreign users with their home aggregators. Two front-ends
establish a signaling association when there exists a roaming agreement
between the two aggregators (cf. the signaling links between federated
UMTS domains [3GPP99]). The front-end of the foreign aggregator uses
the association to authenticate foreign users at their home aggregator and to
retrieve a description of their set of allowed configurations. An alternative
approach is to retrieve so-called authentication vectors from the home
aggregator and authenticate the user at the foreign aggregator, as is the case
in UMTS [Køien03].

In this thesis, we assume that the interactions on the signaling
association between front-ends are based on a AAA protocol like Diameter
[Calhoun03]. The specifics of these interactions are however outside the
scope of this thesis.

Signaling Associations and Network Interfaces
In the ALIVE system, a signaling association with a local aggregator must be
established via a network to which the local aggregator is bound (through a
binding agreements, see Section 2.4.2). This is necessary because the
services that a local aggregator offers are unavailable via networks that are
not part of its service area. For example, stream-it.com (Figure 3-1) only
accepts packets sent through hotspot.nl’s 802.11 network and blocks
packets that originate from other networks (a similar firewalled setting is
discussed in [Hsieh03]).

 END-TO-END INTERACTIONS 47

In general, switching controllers may be able to establish multiple
concurrent signaling associations with the same front-end, typically via
multiple networks. For example, inside the hotspot of Figure 3-1, the
switching controller on Bob’s mobile host could set up a signaling
association with multimedia-forward.nl via the host’s UMTS interface as
well as via its 802.11 interface (multimedia-forward.nl is a global
aggregator).

To simplify the ALIVE system, we assume that a switching controller
establishes at most one signaling association at a time with a certain front-
end. As a result, each signaling association (with front-ends of local
aggregators or with front-ends of global aggregators) is bound to one
network interface. All messages that the signaling association carries
enter/leave the mobile host via that interface. For example, the signaling
association between the switching controller on Bob’s mobile host and the
front-end of media-forward.nl is either bound to the UMTS network or to
the 802.11 network, but not to both.

3.3 End-to-end Interactions

This section discusses the high-level end-to-end interactions that take place
on the signaling associations between switching controllers and front-ends
as well as between switching controllers and media servers (see Section
3.2.4). These interactions are: authentication interactions (Section 3.3.1),
configuration discovery interactions (Section 3.3.2), capability discovery
interactions (Section 3.3.3) and switching interactions (Section 3.3.4). The
latter take place on the signaling association between switching controllers
and media servers.

3.3.1 Authentication

An authentication interaction enables a switching controller to authenticate
a user with a front-end. In the ALIVE system, a front-end must have been
able to authenticate a user before it allows a switching controller to make
use of its services.

Caching Authentication State
In the ALIVE system, successful authentication results in the switching
controller receiving a cryptographic token that it has to use in further
communications with the front-end (e.g., to discover an aggregator’s
available configurations). A token indicates that the front-end has cached the
user’s authentication state, which enables the front-end to reauthenticate
the user from its cache rather than at the user’s home aggregator. This

48 CHAPTER 3 THE ALIVE SYSTEM

reduces the amount of traffic in the Internet as well as the load on home
aggregators, which aids the scalability of the system [Rosenberg98]. It also
reduces the per-interaction delay between the switching controller and a
front-end, which enables mobile hosts to switch between aggregators more
quickly. Similar authentication caches are used in 802.11 networks to pre-
authenticate a user with a set of target access points to which the user’s
mobile host can potentially handoff [Mishra04, Pack02].

The token may need to be protected from eaves dropping, for instance
through a mechanism that uses a pre-defined key to automatically change
the token at both ends on an association after each interaction [Mishra04]
or through an encryption technique such as IPsec. Such security
mechanisms are however outside the scope of this thesis.

Refreshing Authentication Sofstate
In the ALIVE system, front-ends cache a user’s authentication state as
softstate, which means that switching controllers need to regularly refresh
this state. A switching controller and a front-end negotiate a suitable refresh
interval during authentication.

A switching controller can use its own refresh interval for each
individual aggregator. Each of these intervals is however constrained by the
range of refresh intervals acceptable to the respective front-ends. The
rationale behind this approach is that switching controllers will typically
strive for a long refresh interval because it reduces their bandwidth
consumption and costs, and because it saves battery power. Front-ends, on
the other hand, will typically use the length of the refresh interval to trade
off memory usage (a longer refresh interval will require front-ends to
maintain more authentication state) and the bandwidth required to handle
refresh requests (a shorter refresh interval will result in the arrival of more
refresh request messages).

3.3.2 Configuration Discovery

Configuration discovery interactions enable switching controllers to
discover in which available configurations a user can receive a channel from
an aggregator. To accomplish this, front-ends must describe their available
configurations. Configuration discovery interactions have to carry the
authentication token of Section 3.3.1.

Configuration Descriptions
Figure 3-8 shows what the description of set of potential configurations
could look like in the language of the Session Description Protocol (SDP)
[Handley98]. We will use SDP in this thesis because it is an IETF standard.

 END-TO-END INTERACTIONS 49

An alternative description language is that of SDP Next Generation
(SDPng) [Kutscher03], but this is not a standard yet.

s=CNN Radio
...
m=audio 0 RTP/AVP 96 97 98
a=rtpmap:96 G7221/16000
a=fmtp:96 bitrate=32000
a=fmtp:96 bitrate=24000
a=rtpmap:97 GSM/8000
a=fmtp:97 bitrate=13200
a=rtpmap:98 MP4A/LATM/8000
a=fmtp:98 bitrate=6000

configuration

The first line in Figure 3-8 (s=) contains the name of the channel, which is
CNN Radio in this example. The next line (m=) describes the media type
(audio), followed by an indication that the description is based on the RTP
Audio-Video Profile (AVP) [Schulzrinne96b]. An RTP profile defines how
compressed data streams must be broken up into packets for transmission
over the Internet. An RTP profile is codec-specific. The three numbers
behind the RTP/AVP keyword are profile identifiers.

The attribute lines (a=) describe the actual configurations. The
description of a single configuration consists of an rtpmap line and one of the
fmtp lines that follow the rtpmap line. Figure 3-8 thus describes four
configurations, two G.7221 configurations, one GSM configuration, and
one MP4A configuration. An rtpmap line describes the configuration’s codec
type (e.g., a G.7221 codec), while the fmtp lines describe codec specific
parameters (e.g., a bit rate of 13.2 kbps for the GSM configuration).

We note that the bitrate parameters in the fmtp lines in the above
example are for illustrative purposes only. In reality, these parameters are
codec-specific. Also note that the payload types in the media line (m=)
merely form alternatives and do not express an ordering, as is normally the
case in SDP. For simplicity, we omitted all other SDP lines other than s=
and m=.

Media Server URIs
A front-end includes a number of media server URIs in each description of
an available configuration. The URIs point to the aggregator’s media servers
that can currently deliver the channel in that available configuration. The set
of URIs of a single configuration description may consist of different types
of URIs (e.g., a SIP and an RTSP URI). Figure 3-9 shows an example (an
extension of Figure 3-8) in which the URIs appear in a= lines immediately
after a configuration’s rtpmap and fmtp lines.

Figure 3-8. SDP
description of available
configurations.

50 CHAPTER 3 THE ALIVE SYSTEM

s=CNN Radio
…
m=audio 0 RTP/AVP 96 98
a=rtpmap:96 G7221/16000
a=fmtp:96 bitrate=24000
a=sip:server1.stream-it.com
a=rtsp://server2.stream-it.com
a=rtpmap:98 MP4A/LATM/8000
a=fmtp:98 bitrate=6000
a=sip:server1.stream-it.com

configuration
plus media
server URIs

The advantage of including URIs a configuration description is that
switching controllers can directly establish a streaming session with one of
the aggregator’s servers (e.g., using a protocol like SIP [Rosenberg02a] or
RTSP [Schulzrinne98]). This minimizes the number of interactions
between the switching controller and a front-end, which benefits the speed
at which the ALIVE system can switch mobile hosts to another aggregator.
It also enables mobile hosts to immediately start an appropriate media
player based on the type of the URI (e.g., a media player that supports SIP
for a SIP URI). This is important when a mobile host switches between
different types of media servers, for instance from an RTSP server to a SIP
server. The downside is that it requires the media servers of an aggregator
to interact with the aggregator’s front-end, for instance to signal that a user
has begun to receive a channel.

Observe that a switching controller will be involved in selecting a media
server if a configuration description contains multiple URIs. In this case,
sever selection is a function that is distributed across front-ends and
switching controllers.

Virtual Home Environment
The aggregators in the ALIVE system provide a virtual environment of home
configurations. This means that front-ends use the configurations in a user’s
delivery agreement (i.e., his allowed configurations) to describe a user’s
available configurations, irrespective of whether the user is a foreign user or
a user that has a delivery agreement with the aggregator. At the same time,
aggregators actually deliver channels in their own configurations. For
example, the front-end of stream-it.com (Figure 3-5) describes the CNN
TV configurations available to Bob in terms of the configurations that
appear in Bob’s delivery agreement with media-forward.nl, but stream-
it.com’s media servers deliver CNN TV in one of its own equivalent
configurations. Figure 3-10 illustrates this.

Figure 3-9. SDP
description of available
configurations, including
media server URIs.

 END-TO-END INTERACTIONS 51

RTP streamssignaling RTP streamssignaling

front-end

switching
controller
switching
controller

switching
controller
switching
controller

bob@media-forward.nl
(foreign user)

descriptions of media-
forward.nl’s configurations

actual configuration of stream-it.com

actual configuration of stream-it.com

descriptions of stream-
it.com’s configurations

alice@stream-it.com
(stream-it.com subscriber)

stream-it.com

media-forward.nl

The main advantage of a virtual home environment is that foreign
aggregators do not have to expose descriptions of the configurations they
support to foreign users, which is something that they may consider
undesirable for competitive reasons. Another advantage is that it simplifies
switching controllers because they only have to deal with the configuration
descriptions of a user’s home aggregator. This for instance simplifies the
mapping between configuration descriptions and the quality label associated
with the configuration (see Section 2.2.4). A disadvantage of the approach
is that the perceptual quality of the foreign configurations may slightly differ
from those of the home configurations, which may be noticeable to the user
(who expects a quality levels of the configurations of his home aggregator).
In addition, aggregators need to posses more intelligence because front-
ends need to be able to map foreign configurations to the configurations of
the user’s home aggregator and media servers need to do the opposite (see
Section 3.3.4). The conversion will however be computational simple.
Roaming agreements furthermore typically change infrequently, which for

Figure 3-10. Virtual
environment of home
configurations.

52 CHAPTER 3 THE ALIVE SYSTEM

instance enables media servers to store roaming agreements locally and do
the conversion themselves.

Observe that the virtual home environment of configurations is similar
to the ubiquitous availability of certain service numbers in contemporary
cellular networks (e.g., 333 for voice mail access).

Configuration Changes
Changes in a user’s set of available configurations may make a switching
controller decide to switch to another aggregator. One way to detect such
changes is to have switching controllers poll a front-end for a description of
its currently available configurations. However, a more efficient approach is
to make use of an eventing mechanism in which a front-end pushes
configuration change events to switching controllers (cf. the announcement
protocols of SIP [Roach02], SLP [Kempf00], and UPnP [Microsoft00]).
Switching controllers receive these events after they have subscribed to the
notification service.

The change notifications that a front-end issues contain the name of a
channel and a description of available configurations in which a user can
currently receive that channel. An alternative approach is to transmit the
delta with the previous notification message, which means that a
notification only describes those configurations that have become
(un)available since the transmission of the previous configuration
notification. The downside is that this requires the switching controller to
receive all the notifications that a front-end sent to maintain a consistent
view of a user’s available configurations, which may be difficult in a wireless
environment. An advantage of only transmitting deltas is that it saves
network bandwidth as the size of the messages will typically be smaller.

Preferred Configurations
As part of configuration discovery, switching controllers can express their
interest in a subset of a user’s allowed configurations. A switching controller
could for instance prefer configurations that provide mono audio because
the mobile host does not have the capabilities to deal with configurations
that provide stereo audio.

3.3.3 Capability Discovery

To decide if it wants to use a particular aggregator, a switching controller
may first want to discover the capabilities of its front-end. In this thesis, we
only consider one capability, which is the event reporting capability. If a
front-end has this capability, it can report events that signal changes in a
user’s set of available configurations. As a result, switching controllers do

 END-TO-END INTERACTIONS 53

not have to regularly send configuration requests to such front-ends (i.e.,
poll it).

We assume that the capabilities of front-ends change seldomly, which
means that there is no need for capability notifications that signal changes
in a particular front-end’s capabilities.

In general, it is also possible that the different media servers that appear
in a configuration description (see Section 3.3.2) have different capabilities.
For example, some servers may allow switching controllers to begin the
reception of a channel at a specific point (e.g., 5 minutes and 30 seconds
from the beginning). Switching controllers might prefer such servers
because it will enable them continue to receive a channel at exactly the
same point where it left off at the old server. We will however not consider
the topic of media server capabilities any further in this thesis.

3.3.4 Switching

Switching interactions involve the establishment of a multimedia session
with a target media server and the release of the multimedia session with
the current media server. A switching controller establishes and releases
multimedia sessions through direct signaling associations with media servers
(see Section 3.2.4).

To establish a multimedia session, the switching controller must inform
the target media server of the user’s authentication token and a description
of the actual configuration in which the switching controller wants to
receive a channel from the media server. As a result of the virtual
environment of home configurations, the actual configuration is an allowed
configuration of the user’s home aggregator (see Section 3.3.2), which
means that the media sever of a foreign aggregator needs to map it to one of
its own configurations.

To release a session, the switching controller has to inform the media
server of the user’s authentication token and a description of an actual
configuration. Strictly speaking, the configuration description is only
required for intra-server switches (see Section 3.1.2). For all other types of
switches, media servers need to be able to detect switching controllers that
do not release a multimedia session in an orderly manner (e.g., using RTCP
Receiver Reports [Schulzrinne96a]), for example because their network
connection went down suddenly. The media servers can then clean up the
resources the mobile host was using (e.g., transcoders, if any) and inform
the front-end that the user is no longer receiving the channel.

54 CHAPTER 3 THE ALIVE SYSTEM

3.4 ALIVE Control Points and Services

Figure 3-11 shows the internal organization of switching controllers and
front-ends. Both components consist of a control point and an ALIVE protocol
entity (PE in Figure 3-11). The control points are primarily responsible for
local processing (e.g., deciding if the switching controller should initiate
configuration discovery), while the ALIVE protocol entities focus on
realizing the end-to-end interactions of Section 3.3 (e.g., refreshing a user’s
authentication state). For ease of writing, we usually refer to the control
point of a switching controller as the client control point.

control
point

control
point

switching
controller control

point
control
point

front-end
(foreign aggregator)

AAA server
(foreign)

AAA server
(foreign)

roaming
directory
roaming
directory

user
directory

user
directory

server
monitor
server
monitor

discovery and
notification services

ALIVE protocol AAA protocolconnectivity
handler

connectivity
handler

ALIVE
front-end PE

ALIVE
client PE

ALIVE
client PE

pool of media
servers

mobile host

user

The ALIVE protocol entities provide four services to the control points:
– A configuration discovery service, which enables client control points to

discover in which configurations it can receive a particular channel;
– A capability discovery service with which a client control point can

discover the capabilities of front-ends; and
– A configuration notification service, which informs client control points

of changes in the available configurations of a channel.
The ALIVE protocol entities do not provide a capability notification

service because we have assumed that a front-end’s capabilities change very
infrequently (see Section 3.3.3).

A switching controller also contains a connectivity handler, which is a
component that takes care of the network-level interactions, for instance
with aggregator directories and access points (e.g., to execute a handoff). A
connectivity handler offers three services:

– An aggregator discovery service, which enables a client control point to
discover aggregators;

– An aggregator notification service, which informs client control points
of changes in the availability of aggregators on a network; and

Figure 3-11. Internal
organization of switching
controllers and front-
ends.

 ALIVE CONTROL POINTS AND SERVICES 55

– A handoff service, which enables client control points to execute a
handoff.

The other components in Figure 3-11 are a server monitor, a roaming
directory, a user directory, and a AAA server. The server monitor is a local
service that keeps track of the available resources on the aggregator’s media
servers. The front-end control point uses this service to determine in which
configurations the aggregator’s media servers can currently deliver a
particular channel. The roaming directory stores the roaming agreements that
the aggregator has established with other aggregators. The front-end control
point uses the roaming directory to map descriptions of its own
configurations to foreign configurations, and vice versa (see the virtual
home environment of Section 3.3.2). The AAA server and the user
directory are used by the ALIVE protocol entity at the front-end and will be
discussed Section 3.6.3.

Figure 3-12 shows the internal organization of a media server, which also
contains a control point and an ALIVE protocol entity. The ALIVE protocol
entity on the mobile host and the ALIVE protocol entity on the media
server provide a switching service, which enables a client control point to
execute a switch.

control
point

control
point

switching
controller

connectivity
handler

connectivity
handler

control
point

control
point

media server

control
point

control
point

media
forwarder

control
point

control
point

control
point

control
point

media
forwarder

media
forwarder

roaming
directory
roaming
directory

switching service

ALIVE protocol ALIVE
server PE

ALIVE
server PE

ALIVE
client PE

ALIVE
client PE

media server

mobile host

user

The other components on a media server are a roaming directory and a set
of media forwarders. The roaming directory contains the same information
as the roaming directory of the front-end. The control point of the media
server uses the roaming directory to map descriptions of the aggregator’s
own configurations to foreign configurations, and vice versa (virtual home
environment). The media forwarders receive the actual multimedia streams
from a source, optionally manipulate them, and forward them to a mobile
host.

In this section, we focus on the behavior of the control points and on
the services provided by the ALIVE protocol entities and the connectivity

Figure 3-12. Internal
organization of media
servers.

56 CHAPTER 3 THE ALIVE SYSTEM

handler. We assume that these services offer some form of transaction
management (e.g., a transaction ID in the services’ primitives) so that the
control points can match requests with responses.

We first consider the control points of switching controllers (Section
3.4.1), front-ends (Section 3.4.2), and media servers (Section 3.4.3). After
that, we consider the configuration discovery service (Section3.4.4), the
configuration notification service (Section 3.4.5), the capability discovery
service (Section 3.4.5), and the switching service (Section 3.4.7). At the
end of this section, we also consider the services of the connectivity handler
(Section 3.4.8) and the server monitor (Section 3.4.9). The details of these
two components are however outside the scope of this thesis, which is why
we only consider the local services that they provide.

We will consider the ALIVE protocol and the internal behavior of the
ALIVE protocol entities in Section 3.5.

3.4.1 Client Control Point

The control point on the mobile host goes through the five steps of Section
3.1.3. It uses the services provided by ALIVE protocol entities as follows:
1. The control point detects remote environment changes through the

configuration notification service and the aggregator notification service.
Local components such as the resource manager (see Section 3.2.1) also
inform the control point of environment changes on the mobile host
(e.g., a change in available battery power);

2. If configuration discovery is necessary, the control point invokes the
configuration discovery service. During configuration discovery, the
control point might use the handoff service to execute a handoff on one
of the host’s interfaces. After such a handoff, the control point invokes
the aggregator discovery service to discover new local aggregators on the
target network and the capability discovery service to discover the
capabilities of these front-ends (optional). If the control point decides
to use any of the new aggregators, it reinvokes the configuration
discovery service for the newly discovered aggregators. The latter implies
that the configuration discovery service should be able to add new
aggregators to an ongoing discovery procedure; and

3. If a switch is required, the control point invokes the switching service.

Hysteresis
The client control point should apply some sort of hysteresis to the
environment changes. An 802.11 network interface could for instance
alternately report that the 802.11 signal strength is ‘low’ or ‘moderate’,
which may have the effect that the control point ping-pongs between

 ALIVE CONTROL POINTS AND SERVICES 57

aggregators [Hesselman01]. A similar problem exists at the network-level
where mobile hosts handoff between networks [Pollini96].

Parallel Tasks
The services provided by the ALIVE protocol entities and the connectivity
handler should enable the client control point to perform certain tasks in
parallel to minimize the configuration discovery delay. Specifically, they
should enable the client control point to

– Simultaneously discover available configurations on different
interfaces;

– Discover new aggregators on a new network (i.e., after a handoff)
and concurrently discover the capabilities of their front-ends; and

– Decide which available configuration is the best one during
discovery.

3.4.2 Aggregator Control Point

The control point of a front-end is the peer of a client control point. A
front-end’s control point governs the availability of an aggregator’s
configurations. It has two responsibilities:

– Make availability decisions, which means that the control point
decides which of the aggregator’s supported configurations are
available configurations (e.g., using the aggregator’s policies); and

– Map descriptions of the aggregator’s supported configurations to
descriptions of foreign configurations, and vice versa.

Authentication and authorization of users is transparently handled by the
underlying ALIVE protocol entity (see Section 3.6), which enables the
control point to concentrate on the availability of the aggregator’s
configurations.

We distinguish two types of events that require an availability decision:
local events (e.g., the time of day changing to rush-hour or the server
monitor indicating that the available resources on the media servers have
changed) and remote events, specifically requests from client control points
for a description of a channel’s available configurations.

Requests from Client Control Points
If the configuration discovery service indicates that a client control point
solicits a description of the available configurations of a channel, the front-
end control point goes through three steps:
1. Decide in which configurations the aggregator can currently deliver the

channel to the user. This requires the control point to get a description
of the user’s allowed configurations and consult the server monitor to
check in which configurations the aggregator’s media servers can

58 CHAPTER 3 THE ALIVE SYSTEM

currently deliver the channel. The control point also needs to make a
decision on the media servers that it will present to the client control
point for each available configuration;

2. Use the ID of the user’s home aggregator and the roaming agreements
in the roaming directory to map the descriptions of the available
configurations to descriptions of equivalent foreign configurations (this
step is null if the user is not a foreign user); and

3. Use the configuration discovery service to return the result to the client
control point.

Local Events
For local event, the control point also goes through three steps:
1. Decide which channels are available in which configurations and check if

this was different before the event;
2. If the available configurations of a particular channel have changed, use

the roaming agreements to map the new set of available configurations
to foreign configurations. Do this for every foreign aggregator that
appears in the roaming directory; and

3. Use the configuration notification service to convey the descriptions of
the foreign configurations to client control points.

3.4.3 Media Server Control Point

The control point of a media server is a peer of the client control point on a
mobile host. A media server control point establishes and releases
multimedia sessions with a mobile host. It has two responsibilities:

– Start and stop media forwarders; and
– Map descriptions of the aggregator’s supported configurations to

descriptions of foreign configurations, and vice versa (also see front-
end control point, Section 3.4.2)

The control point of a media server receives requests for the
establishment or release of a session from the switching service. The
requests contain the name of a channel and a description of a configuration
(see Section 3.4.7).

The behavior of a media server’s control point to establish a multimedia
session consists of three steps:
1. If the switching service indicates that a switching controller is soliciting

the establishment of a session, use the agreements in the roaming
directory to translate the foreign configuration in the solicitation to one
of the aggregator’s own supported configurations (this step is null for
users that are not foreign users);

2. Find a media forwarder that can deliver the channel in that
configuration and check if there are sufficient resources to run it; and

 ALIVE CONTROL POINTS AND SERVICES 59

3. If this is the case, start the media server, and inform the remote control
point that the session has been established.
When the switching service indicates that a switching controller is

soliciting the release of a session, the control point simply stops the
corresponding media forwarder.

For each of its active media forwarders, the media server control point
also checks if the forwarder’s streams are still being received. If this is no
longer the case (e.g., because the mobile host moved to another network
without having been able to release the session), then the control point
stops the corresponding media forwarder. A control point can for instance
detect the disappearance of a receiver through the absence of RTCP
Receiver Reports [Schulzrinne96a].

3.4.4 Configuration Discovery Service

The configuration discovery service enables the control point on the mobile
host to discover the available configurations in which a user can receive a
particular channel from a set of front-ends.

Figure 3-13 shows the basic behavior of the configuration discovery
service. It involves four types of primitives: requests, indications, responses,
and confirmations. The vertical lines in Figure 3-13 correspond to the
service boundary between a control point and an ALIVE protocol entity.
Time progresses from top to bottom.

indication

response
indication

response

request

confirm

confirm

front-end A front-end B
switching
controller

discovery end

The configuration discovery service is a multiparty service, which means
that a single request can result in indications at multiple front-ends. This
enables the control point on the mobile host to discover configurations at
multiple front-ends simultaneously, which reduces the switching delay.
However, the configuration discovery service reports one confirmation per
front-end (i.e., per response primitive) and issues them during discovery
(i.e., instead of issuing a batch confirmation at the end of the discovery
period). This enables the control point to make switching decisions as soon
as possible, which also helps reducing the switching delay.

Figure 3-13. Behavior of
the configuration
discovery service.

60 CHAPTER 3 THE ALIVE SYSTEM

The configuration discovery service can be invoked again during
configuration discovery so that the client control point can add new front-
ends to the discovery procedure (e.g., when it has discovered new front-
ends after a handoff).

The configuration descriptions in the service’s primitives are in terms of
the configurations that a user can receive from his home aggregator (see the
responsibilities of the front-end’s control point, Section 3.4.2).

Requests
The control point on the mobile host invokes the configuration discovery
service through a configuration discovery request primitive. The parameters
of a request consist of a set of front-end URIs, an interface ID per URI, a
channel name, the user’s identity (e.g., bob@media-forward.nl) and
credentials, and an optional description of a set of preferred configurations.
The preferred configurations have to be a subset of the allowed
configurations that appear in a user’s delivery agreement with his home
aggregator.

A discovery request also contains a parameter that specifies a maximum
amount of time for configuration discovery, starting from the point at
which the control point submits the request. This parameter ensures that
the ALIVE client protocol entity discards late arrivals. When the
configuration discovery service is re-invoked during discovery, the value of
the maximum discovery time parameter is added to the total maximum
discovery time.

Indications
An indication primitive signals that a switching controller is soliciting a
description of the available configurations in which a user can receive a
certain channel. An indication contains the identity of the user (e.g.,
bob@media-forward.nl), a channel name, and a description of a user’s
allowed configurations. If the request contained a set of preferred
configurations, then the indication contains a description of that set of
configurations. Notice that the control point of a front-end uses the identity
of a user to identify the user’s home aggregator (see Section 3.4.2).

An indication only occurs when a user can be authenticated. The
configuration discovery service provider (specifically, the ALIVE protocol
entities) transparently handles authentication, thus hiding the
authentication process from the front-end’s control point.

Responses
The control point of a front-end handles indications and returns the result
in a response primitive. A response contains a channel name and a

 ALIVE CONTROL POINTS AND SERVICES 61

description of the available configurations of that channel. The available
configurations are a subset of the configurations in the indication.

A response also contains a status code that either indicates that the
control point successfully served the request (OK), or that indicates that the
aggregator cannot deliver a certain channel (NotFound). The latter typically
happens when the aggregator does not have a forwarding agreement (see
Section 2.2.5) with the source from which the channel originates.

Confirmations
Each response results in a discovery confirmation at the switching controller
that issued the request. A confirmation primitive contains the configuration
description of the corresponding response, the response’s status code, and
the URI of the front-end that issued the response. If the user could not be
authenticated at the front-end, then the status code is Forbidden.

Summary
Table 3-1 summarizes the parameters of the configuration discovery
service’s primitives.

Primitive Parameters Location
Request Maximum discovery time, channel name, user ID, credentials, front-end

URIs, interface for each front-end, preferred configurations (optional)
SC

Indication Channel name, user ID, allowed configurations FE
Response Status code, channel name, description of available configurations FE
Confirm Front-end URI, status code, channel name, description of available

configurations
SC

3.4.5 Capability Discovery Service

The capability discovery service enables the control point on the mobile
host to discover the capabilities of front-ends (e.g., if they can notify the
control point of changes in a user’s available configurations). The behavior
of the capability discovery service is the same as that of the configuration
discovery service (see Figure 3-14), except that the primitives carry different
parameters.

A capability discovery request contains a set of front-end URIs, an
interface identifier per URI, and a maximum discovery period. An
indication contains does not contain any parameters. A response primitive
contains a description of the front-ends capabilities. The confirmation
contains the URI of a front-end and the capability description returned by
the corresponding front-end. Notice that a capability discovery request does
not contain the user’s credentials because the service does not require users
to be authenticated.

Table 3-2 summarizes the primitives of the capability discovery service.

Table 3-1. Service
primitives of the
configuration discovery
service.

62 CHAPTER 3 THE ALIVE SYSTEM

Primitive Parameters Location
Request front-end URIs, interface for each front-end, maximum discovery time SC
Indication - FE
Response Description of capabilities FE
Confirm Front-end URI, description of capabilities SC

3.4.6 Configuration Notification Service

The configuration notification service enables the client control point to
detect changes in the availability of configurations. Figure 3-14 shows the
service’s basic behavior, which involves a subscribe primitives, confirmation
primitives, requests primitives, and notification primitives. Client control
points use the subscribe primitive to subscribe to configuration notifications
for certain front-ends. The configuration notification service manages the
subscription of users to events, which means that a front-end control point
does not receive an indication primitive when a user subscribes.

request

subscribe

notification

notification

front-end
switching

controller A

subscribe

switching
controller B

request
notification

notification

confirm confirm

Subscribes
The switching controller has to subscribe to configuration notifications
through a subscribe primitive. A subscribe primitive contains the user’s
identity and credentials, a URI of a front-end and the name of the interface
through which it can be reached, a channel name, and an optional
description of a set of configurations in which the switching controller is
particularly interested.

Confirmations
A confirmation acknowledges the subscription of a user to the configuration
notification service. It contains a status code that indicates if the
subscription succeeded (OK), the URI of the front-end, and the channel
name that also appeared in the subscribe request. The status code may also
indicate that the front-end does not support configuration notifications

Table 3-2. Service
primitives of the
capability discovery
service.

Figure 3-14. Behavior of
the configuration
notification service.

 ALIVE CONTROL POINTS AND SERVICES 63

(NotSupported) or that the switching controller is not authorized to subscribe
to the events (Unauthorized).

Requests
The control point at the front-end issues request primitives to notify
subscribed switching controllers of changes in the aggregator’s available
configurations (see step 2 in Section 3.4.2). Each request primitive results
in notifications at multiple switching controllers.

The request’s parameters are the name of a channel, a set of aggregator
IDs (the aggregators that appear in the front-end’s roaming directory, see
Section 3.4.2), and a description of available configurations per aggregator
ID.

Notifications
A notification contains the URI of an aggregator’s front-end, a channel
name, and a description of the available configurations in which a user can
currently receive the channel from the aggregator.

Provider-initiated Notifications
If a front-end does not support notifications, then the configuration
notification service generates notifications on its own initiative, as shown in
Figure 3-15. Provider notifications do not require a client control point to
first issue a subscribe primitive. The parameters of a provider notification
are the same as those of a notification to which the client control point
explicitly subscribed.

notification

notification

front-end
switching

controller A
switching

controller B

notification

notification

Summary
Table 3-3 summarizes the parameters of the notification service.

Primitive Parameters Location
Subscribe Front-end URIs, interface for each front-end, channel name, user ID,

credentials, maximum time to subscribe
SC

Confirmation Status code, front-end URI, channel name SC

Figure 3-15. Provider
notifications.

Table 3-3. Service
primitives of the
configuration notification
service.

64 CHAPTER 3 THE ALIVE SYSTEM

Request Channel name, aggregator IDs, description of available configurations
per aggregator ID

FE

Notification Front-end URI, channel name, description of available configurations SC

3.4.7 Switching Service

The switching service enables the control point on the mobile host to
switch the host to a target media server of the target aggregator. Figure 3-16
shows the service’s behavior (break-before-make strategy), which involves
four types of primitives: requests, indications, responses, and confirmations.

indication

indication
response

request

confirm

current media
server

switching
controller

target media
server

Requests
The control point on the mobile host uses a switch request primitive to
initiate a switch. A switching request contains the user’s ID, his credentials,
a description of a target configuration (the configuration the control point
considers the best one) and two URIs, one of the current media server and
one of the target aggregator. Each of the URIs comes with the identity of a
network interface through which the media servers are can be reached. The
request primitive furthermore contains a switching strategy (e.g., break-
before-make or make-before-break), and the maximum amount of time
that the ALIVE protocol entities can use to execute the switch. The final
parameter is a session release delay, which has to be used in combination
with a make-before-make switching strategy. The session release delay
specifies how long the mobile host should continue to receive a channel
from the current media server, starting from the point at which the mobile
host begins to receive the channel from the target media server. The session
release delay enables the mobile host to receive two copies of the same
channel for a specified amount of time, which can help to keep the host’s
playout buffer (see Section 3.2.1) filled.

Indications
As a result of a request, a switching indication occurs at the target media
server and optionally at the current media server. The order in which these

Figure 3-16. Behavior of
the switching service.

 ALIVE CONTROL POINTS AND SERVICES 65

indications occur depends on the switching strategy. In a make-before-
break switch, the indication will first occur at the target media server and
then at the current media server. For break-before-make switches it will be
the other way around.

The indication at the old media server is optional because a mobile host
may no longer be able to reach its current media server, for instance
because it roamed into a network where the current aggregator is no longer
available. To deal with such situations, the control points of media servers
have to be able detect mobile hosts that are no longer receiving streams
from the media server (see Section 3.4.3).

A switch indication contains a user ID, a channel name, and a
configuration description, all three of which are the same as in the
switching request. The user’s ID enables the control point on the media
server to map the configuration description in the indication to a
description of one of its own supported configurations (see media server
control point, Section 3.4.3).

A switch indication only occurs if a user has been successfully
authenticated. The ALIVE protocol entity on the media server checks this in
a way transparent for the server’s control point.

Responses
The control point on the target media server reacts to a switch indication
with a switch response. The response contains a status code that indicates if
the control point is willing to serve the switching controller.

The control point on the current media server does not issue a
response.

Confirmations
A switch confirmation primitive signals that the switch has been executed
(i.e., that the session with the old media server has been released and the
session with the target media server has been established). A switch
confirmation primitive contains the URI of the target media server and the
status code that the target media server used in its response.

Summary
Table 3-4 summarizes the parameters of the switching service.

Primitive Parameters Location
Request Channel name, description of target configuration, user ID,

credentials, current media server URI, target media server URI,
interface ID per media server, switching strategy, maximum switching
time, session release delay

SC

Indication Channel name, configuration description, user ID MS
Response Status code Target MS

Table 3-4. Service
primitives of the
switching service.

66 CHAPTER 3 THE ALIVE SYSTEM

Confirm Status code, front-end URI SC

3.4.8 Connectivity Handler Services

A connectivity handler provides an aggregator discovery, an aggregator
notification, and a handoff service. The service primitives described in this
section define the interactions between the client control point and the
connectivity handler. The remote primitives are outside the scope of this
thesis.

Aggregator Discovery Service
The aggregator discovery service enables the client control point to discover
the local aggregators available on a certain network. The service’s request
primitive contains the name of one of the mobile host’s interfaces and the
name of a network on that interface. The confirmation that follows contains
a set of URIs that point to the front-ends of the local aggregators on the
network.

Aggregator Notification Service
The aggregator notification service enables the client control point to detect
changes in the availability of local aggregators on a certain network. The
service’s primitives consists of a subscribe primitive (to subscribe to the
service) and of notification primitives (to notify the control point of
changes). The subscribe primitive contains the name of one of the host’s
interfaces and the name of a network on that interface. The parameters of a
notification consist of an interface name, a network name, and a set of
URIs that indicate which aggregators are currently available on the network.

Handoff Service
The handoff service enables the control point to execute a handoff on one
of the mobile host’s interfaces. The parameters of the request consist of an
interface name, the identity of the current and target networks, the user’s
identity and credentials, and a handoff specification. The latter could for
instance specify the maximum amount of time that the connectivity handler
is allowed to spend on a particular handoff, or the strategy that it should use
in executing the handoff (e.g., make-before-break).

The realization of the handoff service typically requires the connectivity
handler to perform a considerable number of tasks, such as:

– Authenticate the user on the target network (e.g., using 802.1x for
802.11 networks [Mishra04, Pack02, Gast02]);

– Obtain an IP address for the interface (e.g., using DHCP [Droms99,
Vatn98]);

 ALIVE CONTROL POINTS AND SERVICES 67

– Perform a location update (e.g., using Mobile IP [Solomon98], SIP
[Wedlund99, Kwon02], SLM [Landfeldt99], and so on); and

– Update the host’s settings after a location update (e.g., adapting its
routing tables [Peddemors04]); and

– Actually execute the handoff (e.g., between two 802.11 access points
[Mishra03, Vatn03, Velayos03, DeCleyn04]).

The details of the execution of a handoff are however outside the scope
of this thesis.

Summary
Table 3-5 summarizes the local service primitives of the connectivity
handler.

Service Primitives Parameters

Request Interface, network Aggregator discovery
Confirmation Interface, network, set of front-end URIs
Subscribe Interface, network
Confirmation Interface, network

Aggregator notification

Notification Interface, network, set of front-end URIs
Request Interface, current network, target network, user ID,

credentials, handoff specification
Handoff

Confirmation Status code

3.4.9 Server Monitor

A server monitor enables the control point of a front-end to check in which
configurations the aggregator’s media servers can currently stream out a
particular channel. Table 3-6 shows the server monitor’s service. The
configuration descriptions are in terms of the aggregator’s own supported
configurations.

Primitive Parameters
Request Channel name, description of supported configurations (optional)
Confirmation Channel name, description of supported configurations plus URIs per configuration
Subscribe Channel name
Notification Channel name, description of configurations

The request primitive of the server monitor service contains the name of a
channel and the description of one or more supported configurations
(optional). A request results in a confirmation primitive that contains a
description of the configurations in which the channel can currently be
streamed off an aggregator’s media servers, including a set of media server
URIs per configuration. The configurations in the confirmation are a subset
of those in the request, if any.

Table 3-5. Service
primitives of the
connectivity handler.

Table 3-6. Service
primitives of the server
monitor.

68 CHAPTER 3 THE ALIVE SYSTEM

The server monitor service also contains a subscribe primitive with
which the control point can subscribe to events that signal changes in the
configurations in which media servers can deliver a certain channel (e.g., a
change in the set of servers that can deliver a certain configuration). After
calling the subscribe primitive, the server monitor server will issue
notification primitives to indicate such changes.

Realization
Conceptually, the server monitor builds on a database that contains entries
of the form <channel name, configuration descriptions, URIs per
configuration description>. To serve requests, the server monitor matches
the channel name and configuration descriptions in a request primitive with
the information in the database, and returns the result in a confirmation
primitive.

To detect changes in the availability of configurations, the server
monitor has to be able to communicate with the media servers of an
aggregator (e.g., by polling the media servers for their available resources
such as processing load). The actual synchronization mechanism as well as
the details of the server monitor’s internal operation are however outside
the scope of this thesis.

In general, the server monitor can be realized on a centralized server, or
it can be distributed across the media servers of an aggregator [Amir98].

3.5 ALIVE Policies

One of the requirements of the ALIVE system is that it should enable users
and other stakeholders (e.g., the system administrator of a set of mobile
hosts or their manufacturers) to flexibly change the rules based on which
the ALIVE system makes decisions (see Section 3.1.3). In this thesis, we use
policies for this purpose [Kamilova05, Zhuang03]. In general, policies are
rules with conditions and actions that are used by a controlling entity to
continuously govern the behavior of a controlled entity. Policies have a goal,
which means that the controlling entity aligns the behavior of the entire
system (controlling entity plus controlled entity) with the goals of the
policies.

The controlling entity is usually referred to as the Policy Decision Point
(PDP), while the controlled entity is called the Policy Enforcement Point
(PEP) [Westerinen01].

In a policy-based system, policies can typically be downloaded into a
PDP from a (central) repository, thus changing the behavior of the entire
system (i.e., PDP plus PEP) without halting it (‘always on’). Another

 ALIVE POLICIES 69

advantage is that this enables policies to be enforced consistently across
multiple devices (e.g., across the mobile hosts of a user).

The PDPs in the ALIVE system are part of the client control points and
the control points of front-ends and media servers. The remaining parts of
the control points plus the ALIVE protocol entities and the connectivity
handler are PEPs.

In this section, we concentrate on the policies of the client control
point. We first discuss which policies it can use (Section 3.5.1) and then
consider a scenario in which policies control a switch (Section 3.5.2).

3.5.1 ALIVE Client Policies

ALIVE policies consist of the usual condition and action parts
[Westerinen01] augmented with a clause that specifies the goal of the policy
[Cox99]. The condition indicates when the policy fires (e.g., “if signal-to-
noise ration greater than 4 dB and speed smaller than 20 km/hr”), the
action indicates which service to invoke (e.g., “initiate configuration
discovery”) when the policy fires, and the goal represents what the policy is
trying to accomplish (e.g., “smooth switching”). The ALIVE protocol entity
and the connectivity handler must execute the actions of a policy when it
fires, which means that the ALIVE policies are obligation policies [Cox99].
Other policy types (e.g., prohibition or authorization policies) are outside
the scope of this thesis.

We distinguish two types of policies that a client control point can use:
configuration discovery policies (when to initiate configuration discovery)
and switching policies (when and how to initiate a switch). Figure 3-17
shows an example of two configuration discovery policies (taken from
[Kamilova05]). The two policies have different goals. The goal of the first
policy is facilitate smooth switching (i.e., before the host’s playout buffer
empties), while the goal of the second policy is to do the same in a
moderately smooth manner (e.g., allowing the buffer to be empty for some
time). The policies realize their goals through different levels of proactivity.
The first policy initiates configuration discovery when the number of lost
multimedia packets on the mobile host’s 802.11 interface increases to
above 20%, while the second one waits until this is 50%. With the second
policy, there is a higher chance of the playout buffer on the mobile host
depleting, but it makes the host stick with the 802.11 for a longer period of
time. This strategy might be preferable for 802.11 networks because they
are typically cheaper to use than a network like UMTS.

70 CHAPTER 3 THE ALIVE SYSTEM

<policy>CONFIGURATION_DISCOVERY
<goal>

<smoothness>HIGH</smoothness>
</goal>
<condition>

<receiving_interface>WLAN</receiving_interface>
<packet_loss>20

<operator>GREATER_THAN</operator>
</packet_loss>

</condition>
<action>

<max_discovery_time>SHORT</max_discovery_time >
<discover_alternatives/>

</action>
</policy>
<policy>CONFIGURATION_DISCOVERY

<goal>
<smoothness>MODERATE</smoothness>

</goal>
<condition>

<receiving_interface>WLAN</receiving_interface>
<packet_loss>50

<operator>GREATER_THAN</operator>
</packet_loss>

</condition>
<action>

< max_discovery_time>DEFAULT</ max_discovery_time>
<discover_alternatives/>

</action>
</policy>

The PDPs in the ALIVE system also use the goals of policies as a key to
retrieve the proper policies from a policy repository, which can for instance
contain policies described in XML (see the example of Figure 3-17). The
client control point could for instance retrieve those policies from the
repository that match the preferences of the user.

3.5.2 Operation

Figure 3-18 shows a scenario (taken from [Kamilova05]) in which the client
control point (the PDP) makes a policy decision at point B in Figure 3-1.
The environment monitor represents the local components on the mobile
host (e.g., the local resource manager and the host’s interfaces).

Figure 3-17. Examples
of configuration
discovery policies.

 ALIVE POLICIES 71

configuration request

Policy
Enforcement
Point (PEP)

Policy
Decision

Point (PDP)
environment

monitor

media-forward.nl stream-it.com mobile host of bob@media-forward.nl

DD

SS

SS

descriptions of
configurations

available to Bob

event: 802.11
network
available

decision: switch

establishment request

configuration request
decision: discover

configuration response
configuration response

establishment response

release request

release response

streams from media-forward.nl
streams from stream-it.com

D SDD SSevaluation of discovery (D) and
switching (S) policies

local service invocations
protocol messages

At point B, the client control point receives an event from the mobile host’s
802.11 network interface indicating that a new 802.11 network has come
into range (the network of hotspot.nl, see Figure 3-1). The event triggers the
evaluation of the discovery policies in the client control point. In the
example of Figure 3-18, this results in a configuration decision that indicates
that the client control point should invoke the configuration discovery
service (see Section 3.4.4). As a result of the service invocation, the mobile
host exchanges configuration request and response messages with the front-
ends of the two aggregators. The configuration responses carry descriptions
of available configurations, in this case a description of the configurations in
which Bob can receive CNN TV. The configuration request and response
messages are part of the ALIVE protocol and will be discussed in detail in
Section 3.6.

The client control point receives the descriptions of the available
configurations in confirmation primitives (see Section 3.4.4). Each time the
client control point receives a confirmation, it evaluates its switching
policies. In the example of Figure 3-18, these policies make the client
control point decide to switch Bob’s mobile host to stream-it.com and
perform the switch in a break-before-make manner (e.g., as part of a
moderately smooth switching strategy). The establishment and release
messages shown in Figure 3-18 are part of the ALIVE protocol and will be
discussed in Section 3.6 as well.

Figure 3-18. Policy-
controlled scenario.

72 CHAPTER 3 THE ALIVE SYSTEM

3.6 ALIVE Protocol

The ALIVE protocol realizes the ALIVE services of Section 3.4. The ALIVE
protocol consists of the messages exchanged between switching controllers
and front-ends and between switching controllers and media servers. These
interactions take place on the signaling associations of Section 3.2.4. The
AAA interactions between front-ends are not part of the ALIVE protocol.

In this section, we concentrate on the ALIVE-specific part of the
protocol. We assume that more common protocol functions are in place. In
particular, we assume that the ALIVE protocol entities provide some sort of
transaction management, that they take care of addressing, and that
messages are delivered reliably. An implementation of the ALIVE protocol
(see Section 3.7) needs to realize these functions.

3.6.1 Message Overview

Table 3-7 provides an overview of the ALIVE protocol messages, specifically
for which services they are used and what their purpose is. Each message
type consists of a request and a response (e.g., a capability request and a
capability response).

Service Messages Purpose

Authentication request &
response

Authenticate a user at a front-end and
cache his authentication state

Configuration discovery

Configuration request &
response

Get a description of the available
configurations in which a user can receive
a channel from a front-end

Subscribe request &
response

Subscribe to configuration notifications Configuration notification

Configuration notification Notify switching controllers of changes in
the set of available configurations in which
a user can receive a channel

Refresh authentication state
(hidden from control points)

Refresh request &
response

Refresh a user’s authentication state at a
front-end

Capability discovery Capability request &
response

Get a description of a front-end’s
capabilities

Establishment request &
response

Establish a multimedia session with a
media server

Switching

Release request &
response

Release a multimedia session with a media
server

3.6.2 Client-side Protocol Entity

The ALIVE client protocol entity maintains a block of state for each front-
end with which it has successfully authenticated the user. This enables it to
send each front-end a regular refresh request to keep the user’s

Table 3-7. Overview of
ALIVE protocol
messages.

 ALIVE PROTOCOL 73

authentication state alive (see Section 3.3.1). The per-front-end state also
enables the ALIVE protocol entity to store the properties of front-ends
(e.g., the refresh intervals that they accept and the authentication tokens
they issued) and hide that information from the control point. This
simplifies the interactions between the ALIVE protocol entity and the
control point. For example, the control point only has to inform the ALIVE
protocol entity of new front-ends and not of already discovered front-ends.

Configuration Discovery
When the ALIVE client protocol entity receives a configuration discovery
request primitive, it sends configuration requests to known front-ends (i.e.,
to front-ends in the request primitive for which it maintains state) and
authentication requests to new front-end (i.e., to front-ends in the request
primitive for which it does not yet maintain state).

A configuration request contains a channel name, an authentication token
(see below), and an optional set of preferred configurations. The client
protocol entity copies the channel name, the token, and the preferred
configurations from the front-end’s state. The state also indicates through
which interface the protocol entity should transmit the request.

The front-end react to the configuration request with a configuration
response, which contains a status code, a channel name, and a description of
the available configurations of a channel (including media server URIs, see
Section 3.3.2). The status code either indicates that the request was
successfully served (OK) or that the aggregator cannot deliver the channel
(status code NotFound). The latter situation usually occurs because the
aggregator does not have a forwarding agreement with the source of the
channel (see Section 2.2.5). The client protocol entity returns the URI of
the front-end that sent the response, the status code, and the configuration
description to the client control point in a confirmation primitive.

An authentication request contains the user’s ID, his credentials, and a
proposal for an authentication refresh interval (see Section 3.3.1). The
client protocol entity copies the user’s ID and his credentials from the
request primitive and uses a default value for the refresh interval. The
configuration discovery request primitive also indicates through which
interface the client protocol entity has to transmit the request.

A front-end reacts to an authentication request with an authentication
response. The response contains a status code that indicates the outcome of
the authentication request. The status code is OK if the front-end
successfully authenticated the user and accepted the refresh interval in the
request. In this case, the authentication response also contains an
authentication token (see Section 3.3.1) that the ALIVE client protocol
entity must include in any further requests it sends to the front-end. The
ALIVE client protocol stores the authentication token and other

74 CHAPTER 3 THE ALIVE SYSTEM

information about the front-end (e.g., the refresh interval and the interface
through which it can be reached) in a block of state that represents the
front-end and immediately sends a configuration request to the front-end (see
above).

The status code of an authentication request can also indicate that the
front-end did not accept the refresh interval in the request (status code
IntervalUnacceptable). In this case, the client protocol entity has to resubmit the
authentication request. To ensure that the client protocol selects an
acceptable refresh interval, the authentication response contains the range
of refresh intervals that the front-end does find acceptable.

The status code of an authentication response can furthermore indicate
that the authentication request did not contain the user’s credentials
(Unauthorized), in which case the client protocol entity has to resubmit the
request with the user’s credentials. Another possibility is that the
authentication response indicates that the front-end could not authenticate
the user (status code Forbidden). In this case, the client protocol entity issues
a configuration discovery confirm primitive with the same status code. This
typically occurs when the aggregator does not have roaming agreement with
the user’s home aggregator.

The ALIVE client protocol entity uses a configuration discovery timer to
cap the discovery process at the maximum value specified in a configuration
discovery request primitive. When the client control point reinvokes the
configuration discovery service during discovery, then it adds the value in
the new request primitive to the current value of the configuration
discovery timer.

The discovery procedure ends when either all the front-ends that
received a configuration request have reacted with a configuration response,
or when the discovery timer expires.

Capability Discovery
Upon receiving a capability discovery request primitive, the client protocol
entity transmits a capability request message to each of the front-ends in the
request primitive. The request primitive also specifies through which the
requests should be sent.

Each front-end replies with a capability response, which contains a
description of the front-end’s capabilities (see Section 3.4.5). The client
protocol entity passes this information to the local control point in a
capability discovery confirmation primitive, which also contains the URI of
the front-end that sent the message. Notice that front-ends also server
capability requests from unauthenticated users.

Capability discovery ends when at the end of the maximum discovery
time specified in the request primitive, or when every front-end has
returned a capability response message.

 ALIVE PROTOCOL 75

Configuration Notification
When the ALIVE client protocol entity receives a subscribe request
primitive from the client control point, it sends a subscribe request message to
known front-ends (i.e., front-ends for which the client protocol entity
maintains state) and an authentication request to new front-ends (i.e., for
which the protocol entity does not yet maintain state).

A subscribe request message contains a token and a channel name. The
client protocol entity copies the channel name from the subscribe request
primitive and the token from the front-end state that a client protocol
entity maintains. The front-end state also indicates through which interfaces
the request should be sent.

The front-end returns a subscribe response message that indicates if the
subscribe succeeded. The client protocol entity passes the result to the
client control point in a confirmation primitive. If the subscribe request
fails, then this is typically because the front-end does support eventing
(NotSupported status code), or because the request contained an invalid token
(Unauthorized status code).

The client protocol entity constructs an authentication request using the
information in the subscribe request service primitive (interface name, user
ID and credentials) and a default authentication refresh interval. The
authentication procedure is the same as during configuration discovery (see
above), except that an authentication response with an OK status code is
followed by the transmission of a subscribe request message instead of a
configuration request message. If the client protocol entity receives an
authentication response with a Forbidden status code, then it pass this code to
the client control point using a subscribe confirmation primitive.

If the subscribe request was successful, the client protocol entity merely
needs to wait for configuration notification messages from the front-end. A
configuration notification message contains the name of the channel and a
description of the available configurations in which the user can currently
receive the channel from an aggregator. The client protocol entity passes
this information plus the URI of the front-end that sent the message to the
client control point in a configuration notification primitive.

For provider-initiated notifications, the ALIVE client protocol entity
regularly sends configuration requests to that front-end to get a description
of the user’s current set of available configurations (e.g., together with a
refresh request). To detect changes, the ALIVE protocol entity could add
the most recent description of available configurations that it received to
the front-end’s state (e.g., as a hash). It can then locally compare the
configuration descriptions in the next configuration response with the
stored version and pass a configuration notification primitive to the control
point if there is a difference.

76 CHAPTER 3 THE ALIVE SYSTEM

A subscribe request also contains the address of the switching controller,
which enables it to also use a subscribe message to update its location at a
front-end, typically after a handoff.

Switching
When the ALIVE client protocol entity receives a switch request primitive
from the control point, it first checks how it needs to switch the mobile
host to the target media server. If the switching strategy is break-before-
make, then the switching controller will first release the multimedia session
with the target media server by sending a release request to it. If it is make-
before-break, then it will first send an establishment request to the target
media server. The client protocol entity uses the URIs in the switch request
primitive to transmit these messages.

An establishment request contains the user’s token for the target
aggregator (obtained from the front-end’s state) and a description of the
intended actual configuration. A release request contains the user’s token
for the current aggregator and a description of the actual configuration in
which the mobile host was receiving the channel (both obtained from the
front-end state).

Media servers reply to an establishment request with an establishment
response. Similarly, they use a release response to answer a release request. Both
reponse messages carry a status code that indicates if the media server
successfully executed the request.

A switch ends when the client protocol entity receives an establishment
response (break-before-make) or when it receives a release response
(make-before-break). The client protocol entity passes the status code in
the establishment response to the client control point in a confirmation
primitive. The status code will be negative if the client protocol entity could
not finish the switch in time.

If the switching strategy is make-before-break and the client protocol
entity receives an establishment response, then it waits until the end of the
release delay before sending a release request message to the current media
server.

Refreshing Authentication State
The client protocol entity uses a per-front-end refresh timer to refresh the
user’s authentication state at a front-end. The value of the timer for a
particular front-end is determined during the authentication request-
response with that front-end (see Configuration Discovery).

When the refresh timer expires, the client protocol entity transmits a
refresh request to the front-end. The refresh request carries the user’s token
for the front-end.

 ALIVE PROTOCOL 77

The front-end replies with a refresh response, which indicates if the front-
end successfully refreshed the user’s authentication state (OK). If this is not
the case, the switching controller either did not include a token, or it
submitted the refresh request too late. The status code signals both cases
through the same status code (Unauthorized).

The ALIVE client protocol entity restarts the refresh timer for a
particular front-end if it receives a positive refresh response from that
front-end.

3.6.3 Front-end Protocol Entity

The ALIVE front-end protocol entity is the peer of the ALIVE client
protocol entity. It maintains a block of state for each switching controller
whose user it successfully authenticated. Each block contains information
like the channel the mobile host is receiving and in which configuration, the
authentication token, the refresh interval that the ALIVE client protocol
entity uses, the user’s set of allowed (foreign) configurations, if the
switching controller subscribed to configuration notifications, and so on. An
ALIVE protocol entity on a mobile host keeps its block at a front-end of
state alive through refresh request messages. The front-end protocol entity
deletes this state if the mobile-side ALIVE entity does not provide a refresh
request in time.

Figure 3-19 shows that the front-end protocol entity contains a AAA
bridge that interfaces with the front-end’s AAA server. The AAA bridge
enables the front-end protocol entity to invoke the services of a AAA server,
which is a local service to authenticate a user and to get a description of a
user’s allowed (foreign) configurations. The AAA server also generates the
user’s authentication token (see Section 3.3.1). We refer to Section 3.6.5
for the AAA server’s interface specification.

AAA
bridge

ALIVE front-end
protocol entity

control point

ALIVE protocol AAA protocolAAA server
(foreign)

AAA server
(foreign)

Configuration Discovery
When the ALIVE front-end protocol entity receives an authentication request,
it first checks if the request includes the user’s credentials and if the refresh

Figure 3-19. Internal
organization of the front-
end protocol entity.

78 CHAPTER 3 THE ALIVE SYSTEM

interval in the request is acceptable. If this is the case, the protocol entity’s
AAA bridge invokes the services of the AAA server to authenticate the user.

When the AAA server successfully authenticates the user, the front-end
protocol entity creates a block of state that represents the user’s switching
controller. The front-end protocol entity adds a description of the user’s
allowed configurations and an authentication token to the block of state,
thus essentially forming an authentication cache (see Section 3.3.1). The
front-end protocol entity also adds the switching controller’s refresh
interval to the block of state. Next, the protocol entity returns an
authentication response to the client protocol entity, which includes the user’s
token and a status code.

The front-end protocol entity returns an authentication response with a
Forbidden status code if the AAA server could not authenticate the user. If the
refresh interval in the authentication request is unacceptable, then it returns
an authentication response with a status code of IntervalUnacceptable. In this
case, the authentication response also contains the range of refresh intervals
that the front-end does find acceptable. If the request does not contain the
user’s credentials, the protocol entity returns an Unauthorized response.

If the front-end protocol entity receives a configuration request, it first
checks if the token in the request matches the token in the switching
controller’s block of state. If this is the case, the protocol entity passes an
indication primitive to the front-end’s control point. The indication
contains a description of a set of allowed configurations, specifically the
intersection of the allowed configurations in the request (preferred
configurations) and the allowed configurations that appear in the user’s
block of state. The protocol entity also includes the user’s ID in the
indication and the channel name from the configuration request message.

When the protocol entity receives a configuration discovery response
primitive, it constructs a configuration response messages and includes the
description of the available configurations in the response primitive (which
includes media server URIs) in the response message. The protocol entity
also copies the status code in the response primitive into the configuration
response message. If the control point indicates that it cannot deliver the
requested channel, the status code is NotFound.

The protocol entity does not generate an indication primitive if the
configuration request includes an invalid token. In this case, the protocol
entity returns a configuration response with an appropriate status code
(Unauthorized).

Capability Discovery
If the front-end protocol entity receives a capability request, it generates a
capability discovery indication primitive. When the local control point
answers with a response primitive, the protocol entity copies the capability

 ALIVE PROTOCOL 79

description in the response primitive to a capability response message and
sends it to the switching controller that sent the capability request message.

Configuration Notification
When the front-end protocol entity receives a subscribe request message
from a switching controller, it first checks if the token matches. If this is the
case, the protocol entity adds the channel name in the subscribe message as
well as the set of preferred configurations in the message to the user’s block
of state. Next, it returns a subscribe response with status code OK. If the
token in the request does not match, the protocol entity returns an
Unauthorized status code in the subscribe response. If the front-end does not
support configuration notifications, it immediately returns a subscribe
response with a NotSupported status code.

When the front-end protocol entity receives a configuration notification
request from the local control point, it checks which switching controllers
have subscribed to receive notifications about the channel specified in the
request and sends a configuration notification message to each of them. The
configuration description in a particular notification messages consists of
the intersection of the available configurations in the request primitive that
match the ID of the user’s home aggregator (see Table 3-3) and the user’s
allowed configurations (in the switching controller’s state).

If the front-end protocol receive a subscribe message with a new IP
address (typically after a handoff), then it updates the state of the
corresponding switching controller with the new address.

Refreshing Authentication State
The front-end protocol entity maintains a refresh timer for each
authenticated switching controller. When the front-end protocol entity
receives a refresh request from a switching controller, it checks if the token
matches and restarts the refresh time for that user. It then transmits a
refresh response that indicates that the state was successfully refreshed.

If the refresh timer times out, the front-end protocol entity deletes the
state associated with the user.

3.6.4 Media Server Protocol Entity

When the ALIVE protocol entity on the media server receives an
establishment request, it first checks with the front-end if the token is valid.
If this is the case, it generates an indication primitive. The protocol entity
copies the parameters in the indication from the establishment request
(channel name, configuration description, and user ID).

When the ALIVE protocol entity receives an establishment response
primitive from the local control point, it returns the contents of the

80 CHAPTER 3 THE ALIVE SYSTEM

primitive (a status code) to the switching controller in an establishment
response message.

Release requests are handled in the same way, except that the protocol
entity immediately transmits a release response after it issued the release
indication primitive.

3.6.5 AAA Server

A AAA server provides a combined authentication and authorization service.
The service primitives described in this section define the interactions
between the ALIVE media server protocol entity and the AAA server. Table
3-8 shows the service’s primitives.

Primitive Parameters
Request User ID, credentials, description of preferred configurations (optional)
Confirmation Success/failure, token, description of allowed (foreign) configurations (a subset of the

preferred configurations, if any)

The request primitive contains the user’s identity (e.g. bob@media-
forward.nl), the user’s credentials, and the description of a set of preferred
configurations (optional). The resulting confirmation contains the outcome
of the authentication/authorization (success or failure). If the outcome is
positive, the confirmation contains a token and a description of the user’s
allowed (foreign) configurations.

If an authentication request fails, then this is usually because a user
attempts to authenticate with a foreign aggregator that does not have a
roaming agreement with the user’s home aggregator.

Realization
The authentication and authorization service mainly builds on user directories.
Each front-end has one user directory, which contains an entry for each
user that has a subscription with the aggregator. Each entry consists of a
user identity (e.g., bob@media-forward.nl) and a description of the user’s
allowed configurations, which are part of the delivery agreement between
the user and the aggregator (see Chapter 2). A user directory is similar to
the home location register in cellular networks such as GSM and UMTS
[Køien03].

When the AAA server receives a request primitive, it first checks if the
user’s identity appears in the local user directory. If this is the case, the AAA
server authenticates the user locally. If the user is a foreign user (i.e., his
identity does not appear in the user directory), then the AAA server
delegates authentication to the AAA server of the user’s home aggregator
(the home AAA server). For example, stream-it.com’s AAA server will
attempt to authenticate Bob at his home aggregator (media-forward.nl)

Table 3-8. Service
primitives of the AAA
server.

 ALIVE PROTOCOL 81

because Bob does not appear in stream-it.com’s user directory. The AAA
server passes the result of the authentication to the ALIVE media server
protocol entity in an authentication confirmation.

The authorization part consists of simply retrieving the description of
the user’s allowed configuration from the user directory. For foreign users,
the AAA server gets a description of the user’s allowed configurations from
his home aggregator, typically as part of the authentication procedure.

The AAA server uses a confirmation primitive to return the result of the
authentication and the description of the allowed (foreign) configurations
to the ALIVE server protocol entity.

AAA servers typically interact with each other through AAA protocols
such as Diameter [Calhoun03]. The details of these interactions are
however outside the scope of this work. The same goes for the internal
operation of AAA servers (e.g., in terms of authentication mechanisms).

3.6.6 Message Summary

Table 3-9 summarizes the messages of the ALIVE protocol, their direction,
and the information they carry. SC stands for Switching Controller, FE for
Front-end, and MS for Media Server.

Message Type Direction Data

Request SC FE User ID, password, refresh interval Authentication
Response FE SC Status code, token, refresh interval range
Request SC FE Channel name, token, description of preferred

configurations (optional)
Response FE SC Status code, channel name, description of available

configurations (including media server URIs)

Configuration

Notification FE SC Channel name, set of available configurations
(including media server URIs)

Request SC FE Channel name, token, IP address Subscribe
Response FE SC Status code
Request SC FE - Capability
Response FE SC Capability description
Request SC FE Token Refresh
Response FE SC Status code
Request SC MS Token, channel name, description of actual

configuration
Establishment

Response MS SC Status code
Request SC MS Token, channel name, description of actual

configuration
Release

Response MS SC Status code

Table 3-9. ALIVE
protocol messages, their
direction, and the
information they carry.

82 CHAPTER 3 THE ALIVE SYSTEM

3.6.7 Typical Scenario

Figure 3-20 shows a typical interaction of the ALIVE protocol using the
example of Figure 3-1. The message exchange begins with when the client
control point on Bob’s mobile host decides to initiate configuration
discovery as a result of Bob moving into the 802.11 network of hotspot.nl
(see Figure 3-1, point B). When this happens, Bob is receiving CNN TV
from his home aggregator media-forward.nl via the UMTS network of
connect-it.nl.

The client control point initiates configuration discovery by calling the
request primitive of the corresponding service. As a result, the client
protocol entity transmits a configuration request to the front-end of media-
forward.nl. At the same time (but shown after the configuration response
from media-forward.nl for readability), the client control point uses the
connectivity handler to connect Bob’s mobile host to the 802.11 network
of hotspot.nl. When the connection has been established, the client control
point discovers local aggregator stream-it.com by calling the connectivity
handler’s aggregator discovery service. In Figure 3-20, we represented the
resulting protocol invocation as an aggregator discovery request-response
interaction (e.g., piggy-backed on DHCP) with hotspot.nl’s aggregator
directory.

Next, the client control point obtains a description of stream-it.com’s
capabilities by invoking the capability discovery service. As a result, the
client protocol entity transmits a capability request to front-end of stream-
it.com. The description in the capability response is such that the client
control point decides to reinvoke the configuration discovery service to add
stream-it.com to the discovery procedure. Since the client protocol entity
does not maintain any state on stream-it.com, it sends an authentication
request to that aggregator’s front-end. However, the status code in the
authentication response indicates that the client protocol entity proposed
an unacceptable refresh interval in the request (IntervalUnacceptable). As a
result, the client protocol entity resubmits the authentication request, this
time with a refresh interval from stream-it.com’s acceptable range of
refresh intervals (in the authentication response). The authentication
response following this request indicates that Bob was successfully
authenticated through a AAA interaction with Bob’s home aggregator.

After that, the client protocol entity sends a configuration request to
stream-it.com’s front-end. The configuration response contains a
description of the available configurations in which Bob can receive CNN
TV from stream-it.com. The available configurations are described in terms
of Bob’s allowed configurations, thus extending Bob’s home environment at
media-forward.nl to stream-it.com.

 ALIVE PROTOCOL 83

Based on the configuration response from stream-it.com, the client
control point on Bob’s mobile host decides that stream-it.com can deliver
CNN TV in a better configuration. As a result, it switches the mobile host
to one of stream-it.com’s media servers by invoking the switching service.
In this example, the client control point requests a break-before-make
switch, which means that the client protocol entity first releases the
multimedia session with the current media server at media-forward.nl and
then establishes a session with a target media server of stream-it.com.

The switch completes when the client protocol entity receives an
establishment response from the target media server. At that point, the
mobile host is receiving CNN TV from one of stream-it.com’s media
servers via the 802.11 network of hotspot.nl.

Notice that the switching controller interacts with stream-it.com via the
802.11 network and with media-forward.nl via the UMTS network.

84 CHAPTER 3 THE ALIVE SYSTEM

authentication request

configuration request

authentication response
(UnacceptableInterval)

configuration response (OK)

Bob’s
mobile host

stream-it.com
(foreign)

media-forward.nl
(home)

authentication request

authentication response (OK)

configuration request

configuration response (OK)

establishment request

establishment response (OK)

release response (OK)

release request

configuration
discovery

sw
itch

streams from stream-it.com streams from media-forward.nlstreams from stream-it.com streams from media-forward.nl

AAA request

AAA response (OK)

aggregator response (OK)

capability request

capability response

aggregator request

hotspot.nl

capability
discovery

aggregator
discovery

establishment of
IP connectivity

3.7 Implementation of the ALIVE Protocol

The ALIVE protocol of Section 3.6 requires one or more underlying
transport protocols to convey the ALIVE protocol messages. The transport
protocol between a switching controller and a front-end will typically be a
single ubiquitously available protocol, while multiple transport protocols
may be required to connect a switching controller to the media servers
(e.g., SIP, RTSP, and WindowsMedia servers) of aggregators.

In this section, we consider an implementation of the ALIVE protocol
that is based on a single transport protocol, specifically the Session
Initiation Protocol (SIP) [Rosenberg02a]. We implemented the provider-

Figure 3-20. Typical
interaction.

 IMPLEMENTATION OF THE ALIVE PROTOCOL 85

initiated notification service, but did not implement the configuration
notification service that involves explicit notification from front-ends. We
also did not implement the capability discovery service.

We first explain why we used SIP to implement the ALIVE protocol
(Section 3.7.1) and briefly introduce the notion of a transaction, which is
SIP’s basic form of interaction (Section 3.7.2). After that, we explain the
mapping of ALIVE messages to SIP messages (Section 3.7.3) and discuss
the configuration discovery part of the ALIVE protocol (Section 3.7.4) as
well as the part that executes a switch (Section 3.7.5). We conclude this
section with the description of a small-scale testbed in which we deployed
the implementation (Section 3.7.6).

3.7.1 Session Initiation Protocol

The Session Initiation Protocol (SIP) [Rosenberg02a] is an application-level
signaling protocol for establishing, modifying, and tearing down multimedia
sessions in the Internet. It uses textual messages, which typically carry a
payload that describes multimedia sessions. SDP (see Section 3.3.2) is one
of the languages that can be used for such descriptions.

We used SIP to realize the ALIVE protocol for the following reasons:
– SIP is typically used to convey descriptions of multimedia sessions

(descriptions of available configurations, in our case), for instance to
get a description of the other party’s capabilities [Rosenberg02b];

– SIP can be run on top of UDP. The advantage of using UDP is that
UDP messages can be sent right away without having to wait for a
connection to be established (e.g., a TCP connection), which allows
a switch to take place more quickly. The disadvantage of using UDP
is that it limits the number of configuration descriptions that can be
transferred to the maximum size of a UDP packet. In this thesis, we
assume that the configuration descriptions that a mobile host
receives from an aggregator fit into one UDP packet;

– SIP reliably transfers messages and provides transaction management
(e.g., to be able to match different configuration responses with the
corresponding requests);

– SIP can be used to refresh softstate (in our case the state maintained
by ALIVE front-end protocol entities) [Donovan02];

– SIP provides hooks for shared secret user authentication;
– SIP’s main purpose is to set up multimedia sessions, which enables

mobile hosts to also use SIP to establish a multimedia session with a
media server. This reduces the number of protocols in the system,
thus reducing the system’s complexity. We do however stress that
aggregators can also use other session control protocols on their
media servers (e.g., RTSP [Schulzrinne98] or WindowsMedia);

86 CHAPTER 3 THE ALIVE SYSTEM

– It seems that SIP will eventually become a ubiquitously available
protocol that is used for many purposes. SIP has for instance been
adopted as the signaling protocol for UMTS multimedia sessions
[Wong03];

– SIP is reasonably bandwidth efficient compared to the relatively high
bandwidth levels that streaming applications usually require; and

– SIP uses textual messages, which are easier to extend, process, and
debug than binary encoded messages.

Finally, SIP can also be used to extend the ALIVE protocol beyond its
current capabilities. SIP eventing [Roach02] could for instance enables the
control points of aggregators to push configuration notification messages to
interested mobile hosts. SIP is currently also being extended with support
for public key authentication [Peterson03].

3.7.2 SIP Transactions

SIP interactions are organized in so-called transactions. A transaction is a
sequence of SIP messages that begins with a SIP client transmitting a request
to a SIP server. The SIP server responds with zero or more so-called
provisional responses followed by one final response. A provisional response
informs the client that the server is handling the request, while a final
response indicates that the server has executed the client’s request.
Depending on the type of request, clients confirm the receipt of a final
response by transmitting an acknowledgement (an ‘ACK’) to the server.
Figure 3-21 shows this basic behavior.

SIP server

provisional responses

request

SIP client

ACK

final response

Transaction Types
SIP supports two types of transactions: invite transactions and non-invite
transactions. An invite transaction is a transaction that begins with an INVITE
request, which is the request type that SIP for instance uses to establish a
multimedia session or to requests another party’s capabilities
[Rosenberg02b]. A non-invite transaction, on the other hand, starts with a
request messages that is not an INVITE. These for instance include

Figure 3-21. Basic SIP
transaction.

 IMPLEMENTATION OF THE ALIVE PROTOCOL 87

OPTION requests (another means to ask a SIP server for its capabilities),
and SUBSCRIBE requests (to subscribe to event notifications) [Roach02].
In our implementation, we only used invite transactions.

A SIP client involved in an invite transaction issues an ACK when it
receives a final response from a server. Non-invite transactions do not
involve an ACK. Strictly speaking, an ACK is not part of an invite
transaction if the final response is a 200 OK (see below), while an ACK is
part of the transaction for other final responses.

Response Types
SIP supports different types of provisional and final responses. The type of a
response is determined by its status code, which is an integer number
between 100 and 699. A provisional response has a status code between
100 and 199, while the status code of a final response falls in the range
200-699.

The most important status code is 200 (OK). A response with this status
code signals that the server has successfully executed the request of the
client (e.g., an INVITE request). An example of a provisional status code is
100 (Trying), which informs the client that the server is trying to execute its
request. All other status codes indicate the client needs to redirect its
request to another SIP server (300-399), or that the SIP server could not
serve the client’s request (400-699).

Dialogs
SIP transactions take place in the context of a dialog, which is a signaling
association between a SIP client and a SIP server. A dialog is identified by a
tuple of three random numbers. Each SIP message contains the identifier of
the SIP dialog to which it belongs in the form of three protocol headers (To
tag, From tag, and Call ID, see RFC 3261 for details).

Transactions within a dialog are identified by the dialog’s identifier and
a sequence number. Every new transaction has a sequence number that is
one higher than the transaction before it. Like the dialog identifier, every
SIP message also carries the sequence number of the transaction (CSeq
header).

Dialogs are established through INVITEs. The INVITE that triggers the
establishment of a dialog is called an initial INVITE. INVITEs that are sent
across an existing dialog are referred to as re-INVITEs.

3.7.3 Messages

Table 3-10 shows the mapping from ALIVE to SIP messages. To reduce the
switching delay, we piggyback messages onto each other (e.g., a
configuration request on an authentication request).

88 CHAPTER 3 THE ALIVE SYSTEM

ALIVE protocol message Also carries SIP message
Authentication request Configuration request INVITE
Authentication response Configuration response 200 (OK), 401 (Unauthorized), 403

(Forbidden), 404 (NotFound), or 422
(IntervalTooShort)

Configuration request Refresh request Re-INVITE
Configuration response Refresh response 200 (OK) or 401 (Unauthorized)
Refresh request Configuration request Re-INVITE
Refresh response Configuration response 200 (OK) or 401 (Unauthorized)
Establishment request - INVITE
Establisment response - 200 (OK) or 401 (Unauthorized)
Release request - BYE
Release response - 200 (OK) or 401 (Unauthorized)

3.7.4 Configuration Discovery

Figure 3-22 shows the typical discovery behavior of the ALIVE protocol
when the client control point invokes the configuration discovery service, in
this case at point B of Figure 3-1.

INVITE

re-INVITE

200 OK

200 OK

Bob’s
mobile host

stream-it.com
(foreign)

media-forward.nl
(home)

ACK

ACK

INVITE

200 OK

ACK

200 OK

BYE

configuration
discovery

switch

streams from stream-it.com streams from media-forward.nlstreams from stream-it.com streams from media-forward.nl

establish IP connectivity
+ discover stream-it.com

hotspot.nl

Observe that the switching controller on Bob’s mobile host can interact
with hotspot.nl and media-forward.nl (via UMTS) simultaneously. Figure 3-
22 only shows these interactions sequentially for readability. Also notice
that Figure 3-22 does not show the AAA interactions between stream-it.com

Table 3-10. Mapping of
ALIVE messages to SIP
messages.

Figure 3-22. Typical
discovery behavior of
the ALIVE protocol. /*
change: add handoff */

 IMPLEMENTATION OF THE ALIVE PROTOCOL 89

and media-forward.nl to authenticate Bob. We will discuss the switching
part of Figure 3-22 in Section 3.7.5.

INVITEs
An INVITE is a combined authentication-configuration request and also
establishes a dialog with a front-end. The client protocol entity transmits an
INVITE to front-ends with which it has not authenticated the user, in Figure
3-22 to the front-end of stream-it.com (via the host’s 802.11 interface).

Each INVITE contains the user’s ID in the From header and the user’s
credentials in the Authorization header [Rosenberg02a]. An INVITE also
contains SDP with the name of the channel the user wants to receive in the
s= field. The SDP may contain a description of a set of allowed
configurations (the preferred configurations).

The SDP is ‘inactive’, which means that the last line in the SDP payload
is an a=inactive line. The a=inactive line informs an aggregator that the SDP
describes capabilities rather than a particular configuration in which the
aggregator should begin to stream the channel. This mechanism is similar to
the SDP offer/answer model standardized by the IETF [Rosenberg02b].
However, unlike [Rosenberg02b], we use this mechanism in a multiparty
fashion because a client protocol entity will generally query multiple
aggregators at the same time.

An INVITE furthermore contains Session-Expires header [Donovan02],
which the ALIVE protocol entity on the mobile host uses to propose an
interval for refreshing the user’s authentication state at a front-end (see
Section 3.6.2).

Re-INVITEs
A re-INVITE is a combined configuration-refresh request. The client
protocol entity sends a re-INVITE to a front-end to query it for its available
configurations (i.e., as a configuration request) when it has already
authenticated the user with that aggregator. In the scenario of Figure 3-22,
the client protocol entity transmits the re-INVITE to media-forward.nl (via
the host’s UMTS interface). Since a re-INVITE also acts as a refresh
message, the ALIVE front-end protocol entity refreshes a user’s state when
it receives a re-INVITE.

Re-INVITEs contain the same type of information as INVITEs, except
that a user’s credentials are replaced by an admission token. A re-INVITE
also contains ‘inactive’ SDP.

The client protocol entity also regularly transmits re-INVITEs as refresh
requests (cf. [Donovan02]). In this case, the re-INVITE also acts a
configuration request. The length of the transmission interval is aggregator-
specific. For simplicity, we have omitted the regular re-INVITEs from
Figure 3-22.

90 CHAPTER 3 THE ALIVE SYSTEM

200 OKs
A front-end protocol entity responds to an INVITE with a 200 OK if it has
successfully authenticated the user and has accepted the proposed refresh
interval in the INVITE. A 200 OK is thus a positive authentication-
configuration response message. A 200 OK also establishes a SIP dialog
between the switching controller and the front-end.

A 200 OK contains the refresh interval in the Min-SE header
[Donovan02] and an admission token in the Admission-Authorization-
Token header (cf. the P-Media-Authorization-Token of [Marshall03]).

The 200 OK’s SDP is also ‘inactive’ and contains the name of the
channel, a description of the user’s potential configurations, and URIs to
media servers. Figure 3-23 shows an example for channel CNN Radio.

s=CNN Radio
…
m=audio 0 RTP/AVP 96 98
a=rtpmap:96 G7221/16000
a=fmtp:96 bitrate=24000
a=sip:server1.stream-it.com
a=rtsp://server2.stream-it.com
a=rtpmap:98 MP4A/LATM/8000
a=fmtp:98 bitrate=6000
a=sip:server1.stream-it.com
a=inactive

configuration
plus media
server URIs

mark SDP
as ‘inactive’

Aggregators react to a re-INVITE with a 200 OK if they have successfully
re-authenticated the user, either if the re-INVITE represents a
configuration request (with a piggybacked refresh request) or if it
represents a refresh request (with a piggybacked configuration request).
These 200 OKs contain the same sort of information as a 200 OK to an
INVITE.
The SDP in a 200 OK that is the result of regular re-INVITE (i.e., a refresh
request with a piggy-backed configuration request) enables a client protocol
entity to regularly detect changes in a user’s set of potential configurations
(‘polling’). A more efficient and timely approach would be to use an
announcement protocol [Roach02] (i.e., realize the eventing service of
Section 3.4.5), but the use of such a protocol in the ALIVE system is an
item of future work.

The request-response procedure of the ALIVE protocol is similar to that
of SDP’s offer/answer model [Rosenberg02b].

401, 403, 404, and 422 Responses
The ALIVE protocol uses four error responses (in general, SIP error
responses lie in the range 300-699):

Figure 3-23. ‘Inactive’
SDP description of
potential configurations.

 IMPLEMENTATION OF THE ALIVE PROTOCOL 91

– 401 Unauthorized: the INVITE does not contain the user’s
credentials;

– 403 Forbidden: the aggregator cannot authenticate the user, typically
because the aggregator does not have a roaming agreement with the
user’s home aggregator;

– 404 Not Found: the aggregator cannot deliver the channel for which
the client protocol entity requests potential configurations (usually
because the aggregator does not have an agreement with the source
from which the channel originates); and

– 422 Session Interval Too Small: the aggregator requires a larger
refresh interval.

Figure 3-24 illustrates that a 401 and a 422 response cause the client
protocol entity to resubmit the request with other information. As a result,
a client protocol entity might be involved in multiple SIP transactions
before it receives a 200 OK. In the example of Figure 3-24, the first
INVITE to stream-it.com does not contain the user’s credentials. The
aggregator responds to that INVITE with a 401 Unauthorized
[Rosenberg02a] asking the client protocol entity to resubmit the INVITE
with the user’s credentials. The second INVITE in Figure 3-24 contains
these credentials, but stream-it.com considers the proposed refresh interval
too small. Stream-it.com therefore returns a 422 Session Interval Too Small
to the client protocol entity, which contains its minimum acceptable refresh
interval in the 422’s Min-SE header [Donovan02]. The third INVITE
contains all the necessary information and results in a 200 OK. Observe
that the response to the second INVITE may have been a 403 Forbidden if
the aggregator could not authenticate the user. This would have ended the
interaction as well, but with a negative outcome.

92 CHAPTER 3 THE ALIVE SYSTEM

INVITE

re-INVITE

401 Unauthorized

200 OK

Bob’s
mobile host

stream-it.com
(foreign)

media-forward.nl
(home)

ACK

ACK

INVITE

422 Session Interval Too Small

ACK

INVITE

200 OK

ACK

INVITE

200 OK

ACK

200 OK

BYE

configuration
discovery

switch

streams from stream-it.com streams from media-forward.nl

establish IP connectivity
+ discover stream-it.com

hotspot.nl

3.7.5 Switching

To switch between SIP servers, the client protocol entity transmits an
INVITE to the target media server and a BYE to the current media server.
Figure 3-24 illustrates this at point B in Figure 3-1 for a break-before-make
switch. The INVITE and the BYE contain the Admission-Authorization-
Token so that the media servers can verify that the user has been
authenticated. The SDP payload contains the name of the channel and a
description of the selected ‘best’ configuration of the channel. The SDP
must not contain an a=inactive line.

A 200 OK response from the target media server indicates that the
media server is transmitting the channel to the mobile host.

Change of IP address
Depending on the signaling protocol, the client protocol entity may be able
to reuse an existing signaling association with a media server if it executes

Figure 3-24. Multi-
round configuration
discovery interaction
with an aggregator.

 IMPLEMENTATION OF THE ALIVE PROTOCOL 93

an intra-media server switch (i.e., the target media server is the same as the
current media server). SIP for instance enables mobile hosts to change the
address of a mobile host without tearing down the signaling association
(e.g., using the Contact header in a SIP re-INVITE messages
[Wedlund99]). Of course, the media forwarder on the media server that
transmits the actual multimedia packets (see Section 3.4.3) must also be
able to deal with such address changes.

3.7.6 Testbed

We realized the SIP implementation of the ALIVE protocol using the Open
SIP stack (version 1) [OpenSIP]. The Open SIP stack is written in C and
also contains an SDP parser.

Figure 3-25 shows the small-scale testbed in which we deployed the
implementation. Our objective was to realize inter-aggregator switches
using multiple networks. The main components of the testbed are a laptop,
an aggregator server, a Radius server (not shown in Figure 3-25), a fixed
Ethernet, an 802.11 network, and a UMTS network. The laptop represents
a mobile host in the ALIVE system and is equipped with an 802.11
interface (an Orinoco 802.11b Gold card), a fixed Ethernet interface, and a
UMTS interface (via Bluetooth over USB). The aggregator server ‘hosts’
three aggregator domains and connects to the fixed part of the network.
The Radius server represents a user’s home aggregator and is based on the
software of the Free Radius project [FreeRadius]. The Ethernet, the 802.11
LAN, and the UMTS network are three different subnets and represent
three different access providers. All the machines the testbed use Linux.

94 CHAPTER 3 THE ALIVE SYSTEM

aggregator
server

802.11
access point

laptop
Ethernet

control
point

protocol
entity

SIP/SDP

SIP/SDP

configure
configure

handoff

plug/unplug

switch

VIC
(receiver)

VIC
(sender)

RTP

configure

decisions

Mobility
Manager

events

SIP/SDP

configure

control
point

protocol
entity

control
point

protocol
entity

control
point

protocol
entity

UMTS 802.11 Ethernet

UMTS

process

Internet

Aggregator Server
The aggregator server ‘hosts’ three aggregator domains in the form of three
processes that each represent a front-end. Each process is bound to one
network (Ethernet, UMTS, or 802.11) and consists of a control point and
the ALIVE protocol (see Section 3.7) on top of a SIP user agent server. We
bound the front-ends to a network by appropriately configuring the laptop
(i.e., we did not use a protocol like DHCP to discover the front-ends). The
front-end control points are virtually empty in our implementation and are
an item of future work.

The front-end processes authenticate users with the Radius server and
communicate with that server via the Ethernet. We configured the Radius
server such that it returns a description of a user’s allowed configurations if
it can authenticate a user. We did however not implement the conversion
to the configurations supported by the three foreign front-ends (i.e., the
virtual environment of home configurations), which would be a task of the
front-ends’ control points.

The aggregator server also contains a process that runs the well-known
video conferencing tool VIC [VIC] as a multimedia server. The three front-

Figure 3-25. Testbed.

 RELATED WORK 95

ends use the VIC process to deliver a channel, which means that the three
aggregators essentially use a shared pool of media servers. Of course, this is
a situation that will not occur in practice.

To deal with IP addresses changes, we extended VIC such that the
front-end processes can dynamically change the IP address to which the
VIC server sends it packets. The extension also enables the front-ends to
dynamically change the actual configuration in which VIC transmits a
channel, specifically by changing the bitrate of the stream, its framerate, and
its ‘quality’ (the latter is a VIC-specific metric).

Laptop
The laptop runs three processes, one of which executes the client control
point and the client-side of the ALIVE-over-SIP protocol. The other two
processes execute VIC (as a client) and a mobility manager [Peddemors04]
that keeps track of the state of the laptop’s network interfaces (e.g., which
interfaces currently have link-layer connectivity). We attached the Open SIP
software to a library that enables the stack to transmit a specific SIP
message via a specific interface. This also required us to create three routing
tables on the laptop, one for each of the laptop’s interfaces. We
furthermore modified VIC such that it can receive a multimedia stream via
a specific interface.

The mobility manager sends events to the client protocol software (e.g.,
network disconnects), which then result in the ALIVE protocol being
executed. For example, unplugging the Ethernet cable (see Figure 3-25) will
result in the mobility manager informing the client control point that the
Ethernet connection has gone down. As a result, the control point on the
mobile host will invoke the ALIVE-over-SIP protocol to discover the
available configurations of the aggregators bound to the 802.11 network
and the UMTS network. After collecting their responses, the client control
point for instance decides to switch to the aggregator bound to the wireless
LAN, which means that it sends an establishment message (an INVITE) to
it via the 802.11 network. This message configures the VIC server with the
address of the laptop’s wireless LAN interface instead of with the laptop’s
Ethernet interface and also changes the configuration in which the server is
transmitting a channel.

3.8 Related Work

Several papers in the literature consider hosts that switch from one server
machine to another (e.g., [Dutta02, Trossen03, Roy02, Xu00, Kim01]),
but most of them do not investigate switches between the servers of
different access-controlled domains (i.e., inter-aggregator switches). The

96 CHAPTER 3 THE ALIVE SYSTEM

exception is [Trossen03], but their business network is application-neutral
and is not based on agreements. In addition, their system puts most of the
switching responsibilities in access routers instead of on mobile hosts.

The ACT Framework
Trossen and Chaskar [Trossen03] consider mobile hosts that need to
dynamically connect to or switch between application-specific services (e.g.,
a transcoder) after an IP-level handoff (e.g., controlled by Mobile IP or
SIP). Their value chain (discussed in the form of three scenarios) is
comparable to ours. It consists of content sources, Supplementary Service
Providers (SSPs), and wireless network operators. SSPs are comparable to
our aggregators, except that SSPs are application-neutral, while our
aggregators are specific to the distribution of real-time multimedia content.
Similar to the aggregators in our model, SSPs can also be bound to specific
network operators, in which case mobile hosts must be able to switch to
another SSP when they leave a network operator’s coverage area. A
difference with our model is that content sources can also be bound to
network operators, which is a case that we do not consider. Unlike our
work, they do not consider agreements.

Trossen and Chaskar propose a framework that enables mobile hosts to
switch between (or connect to) application-specific services such as those
provided by their SSPs. Their Application Context Transfer (ACT)
framework revolves around the notion of an application context, which is a
block of application-specific information (e.g., an SDP description of a
multimedia session) that is stored in the access router to which the mobile
host attaches. In the event of a handoff, this router transfers the context to
the host’s new access router, which uses the information to decide how to
continue the session. Trossen and Chaskar discuss several message sequence
diagrams that suggest how the new access router can accomplish this. For
example, if the mobile host was receiving a multimedia stream through a
proxy server, then the new access router can decide to set up a bi-
directional tunnel with the proxy so that the stream from the source will
continue to flow through the proxy. Another possibility is that the new
access router is responsible for discovering another source that provides the
same content, for instance when the mobile host’s current source is
unavailable through the new access router (e.g., because the new access
router belongs to another network operator).

While the ALIVE and ACT value chains are similar, the underlying
systems are completely different. The main difference is that the ACT
framework realizes its functions (e.g., discovery of SSPs) in access routers,
while the ALIVE system puts these functions on mobile hosts. As a result,
the ACT framework requires a more advanced and more complex router
infrastructure (e.g., to maintain application-level state and to interact with

 RELATED WORK 97

other access routers or sources). The ALIVE system requires no additional
features from routers, which keeps the network simple. An advantage of the
ACT approach is that it integrates with Mobile IP into a single solution.
Finally, the ACT framework may also involve per-user interactions between
the new access router and the content source, which might negatively affect
the scalability of the system when delivering real-time multimedia content
to a large number of mobile users (server implosion).

MarconiNet
The MarconiNet system of Dutta et al. [Dutta02] consists of affiliate
domains that receive streams from radio or TV broadcasters and forward
them to mobile hosts using a set of media servers. Each media server is
responsible for one subnet and delivers streams to mobile hosts through
locally scoped IP multicast groups. Mobile hosts switch from one server to
another by switching to another multicast group. In [Dutta02], the authors
discuss a signaling protocol that realizes such handoffs in combination with
DiffServ-based QoS control. Like our system, MarconiNet runs in a
managed environment with agreements between affiliates and radio or TV
broadcasters. Their affiliates are similar to our aggregators. One of the main
differences with our work is that Marconinet only considers handoffs
between servers of the same affiliate and that they do not explicitly
distinguish application and network-level roles. As a result, they miss most
of the agreements of our model (e.g., application-level roaming
agreements). Other differences are that we explicitly consider multi-homed
mobile hosts and that their approach does not include the notion of a
configuration. Our system therefore differs considerably from theirs. We do
however not cover security issues, which Dutta et al. do.

Switching Between Transcoders
Roy et al. [Roy02] discuss a system that enables mobile hosts to seamlessly
switch between two transcoding servers. They accomplish this by migrating
the state of a transcoding session (e.g., information to reconstruct the next
frame from the source at the target transcoder) from one server to another.
The authors discuss three types of inter-server protocols that can be used
for this purpose. We consider this work complementary to ours.

Internet Media Guides
Our work can also be considered from an Internet Media Guide (IMG)
perspective [Nomura03]. The MMUSIC group of the IETF is currently
looking into a framework for the distribution of IMGs to a potentially large
number of (mobile) users. They define an IMG as a structured set of
descriptions of multimedia sessions (e.g., in SDP) and distinguish IMG
senders, IMG transceivers, and IMG receivers. An IMG transceiver receives

98 CHAPTER 3 THE ALIVE SYSTEM

IMGs from senders, optionally modifies the IMGs, and forward them to
IMG receivers. In our work, a multimedia session is a multimedia channel
being transmitted at a certain configuration. Sources are IMG senders,
aggregators are IMG transceivers, and mobile hosts are IMG receivers.
Aggregators can be considered IMG transceivers because they bundle
channels from sources and because they can offer channels to mobile users
at other configurations than the sources from which they receive the
channels (see Section 2.2). The work we presented in this thesis addresses
at least two of the requirements in [Nomura03]. First, [Nomura03]
requires that IMG receivers are allowed to communicate with multiple IMG
senders simultaneously. Our (multi-homed) mobile hosts communicate
with multiple IMG senders because aggregators are IMG transceivers and
IMG transceivers are also IMG senders. A second requirement is that it
must be possible to deliver customized IMGs to receivers. The front-ends
of our aggregators do exactly this because they determine sets of available
configurations on a per-user basis (albeit limited by the configurations that
an aggregator supports).

ServiPoly
Like in our work, Xu et al. [Xu00] also consider the delivery of multimedia
services in multiple configurations (they call this feature service
polymorphism). In their ServiPoly system, clients request a multimedia
service from a server. Clients include their available resources in the request
(e.g., battery power and available bandwidth), which servers use to select a
service configuration. Servers then deliver such a service configuration
directly or through an intermediary proxy server. Proxy servers may be part
of different domains and are therefore comparable to our media servers.
While it is not the main focus of their paper, Xu et al. suggest that mobile
hosts can handoff to a proxy server of another intermediary domain by
resubmitting their request for a multimedia service. The original server (or
a replica thereof) would then select a new configuration and a new proxy
server for the client. This is similar to our system, except that their servers
possess most of the intelligence that we put on mobile hosts. ServiPloy
furthermore delivers configurations tailored to individual clients, which is
probably less scalable for live multimedia channels with a large number of
receivers.

Distributed HTTP Proxies
Kim, Lee, and Chung [Kim01] discuss a system of distributed proxy servers
that deliver web pages from a web server to mobile hosts. The proxies are
responsible for transcoding (e.g., reducing the size of resolution of images)
and caching and each serve a specific set of base stations. The latter means
that mobile hosts need to switch to another proxy server when they leave

 RELATED WORK 99

their current proxy’s service area, which is something that may happen in
the middle of an HTTP session (i.e., when the mobile host is receiving a
web page).

Mobile hosts are responsible for switching to another proxy. They use a
table to map the ID of a base station to a proxy server and initiate the
switch by sending a handoff message to the target proxy server. The handoff
message contains the HTTP request that the mobile host used to start the
HTTP session with the old proxy server, the URLs of the files that the host
was able to receive from the old proxy, and the number of bytes it received
of each file. This information enables the target proxy server to determine if
the mobile host has received all the files associated with the web page it
requested from the old proxy.

The target proxy can retrieve transcoded images that the mobile host
has not yet received from the old proxy. Proxy servers exchange such
images through synchronization request and response messages.
Alternatively, a proxy server may go directly to the web server to retrieve
missing files.

The main difference between the work of Kim et al. and our work is
that their work lacks a well-defined business network (cf. Chapter 2).
Another major difference is that they focus on HTTP communications
rather than on real-time streaming, which yields completely different
system requirements. Handoff delay, for example, is less of an issue in their
system than in our system (they reported average handoff delays in the
range from 5 to 20 seconds). Another difference is that our system builds
on standard IETF protocols, while their handoff and synchronization
messages do not seem to follow a standard. Kim et al. do however cover
state transfer between proxy servers (cf. [Roy02, Trossen03]), which is
something that we have not considered.

The main similarities are that they also use a system of distributed proxy
servers to deliver information to mobile hosts. In addition, their design also
seems to put most of the system’s intelligence on mobile hosts, although
they do not specifically articulate that.

Switching on the Fixed Internet
Karrer and Gross [Karrer01] discuss an application-level system that
enables fixed Internet clients to switch between (proxy) servers that produce
the same video stream. They consider such switches an alternative to a
server adapting a video stream itself (e.g., by dropping frames). In their
system, clients are responsible for switching to another server and also for
detecting events that may lead to such a switch.

The primary goal of the work of Karrer and Gross is to enable clients to
transparently switch between servers. To accomplish this, they investigate
how they can offer a constant data stream to a client’s player during a

100 CHAPTER 3 THE ALIVE SYSTEM

switch. They assume that a stream consists of a sequence of numbered
packets and that servers use the same numbering for the same stream.

Karrer and Gross’ solution uses clients that first store the packets they
receive in a queue and then feed them to a video player. Their central
notion is that of a start packet, which is the first packet that a client wants
to receive from a target server. A client informs a target server of the
number of its desired start packet when it initiates a switch to that server.

Start packets can be used to repair packet loss incurred by the stream
coming from the old server. A client could for instance ask the target server
to begin with a packet that the client is about to play back (i.e., more at the
head of the queue), which would give the client the opportunity to receive
any lost packets from the target server. Conversely, if a client hardly looses
any packets from the old server, then it may request the target server to
begin with a packet that is further away from being played back (i.e., more
toward the queue’s tail). This would reduce the number of duplicate
packets, which reduces bandwidth consumption but offers less opportunity
to restore missing packets. Observe that clients may decide to temporarily
receive a same stream from the old server as well as from the new server to
improve the quality of the switch.

The continuity of the stream arriving at a client is furthermore
influenced by the delay between the client and the target server. The
authors demonstrate this by having a client in Europe switching between a
server in the US and a server in South America.

Karrer and Gross use start packets in combination with the delay
between the client and the target server to develop four switching policies.
One of these policies says that if packet loss on the path from the old server
is ‘high’ and the delay to the target server is ‘large’, then the client should
use a start packet that is currently at the head of the queue.

The work of Karrer and Gross differs form our work in that they only
consider switches between servers instead of between access-controlled
domains (our aggregators). In addition, they only consider the switches
itself and not the signaling interactions that precede it (e.g., to discover
which servers are available and which streams they offer).

Others
Hsieh et al. [Hsieh03] discuss a receiver-oriented TCP-clone that is able to
hand a TCP connection off from one server to another. While they also
consider multi-homed mobile hosts, their work is at the transport layer,
which makes it quite different from ours.

[Snoeren01b, Sultan02] consider handoffs between servers for other
reasons than mobility, for instance to increase the availability of a service
(e.g., handoff to another server when the current server gets overloaded).
They transfer TCP state (e.g., the sequence number of the last successfully

 RELATED WORK 101

acknowledged data segment) and some application-level state to resume a
TCP connection (e.g., for HTTP applications) at the target server at exactly
the same place where it left off at the original server. A similarity with our
work is that the clients in [Snoeren01b] are responsible for selecting a
target server just like our mobile hosts are responsible for selecting a target
configuration, aggregator, and media server.

Chapter 4

4. Analysis

In this chapter, we analyze overhead of the ALIVE protocol, specifically in terms of
the extra delay it introduces. We concentrate on environments with 802.11 hotspots,
where the ALIVE protocol typically comes into play at the edge of an 802.11 cell. At
these edges, we experiment with the delays introduced by the ALIVE protocol, which
may be substantial as a result of the exponential back-off retransmission scheme used
by the Session Initiation Protocol (SIP) to recover from packet loss. As we have seen in
Chapter 3, we implemented the ALIVE protocol as a thin protocol layer on top of SIP.

We first outline our approach (Section 4.1) and take a look at the different types
of delays involved in a typical switch (Section 4.2). Next, we discuss our experiments,
which concentrate on the retransmission behavior of SIP transactions under various
802.11 network conditions (Section 4.3). After that, we describe our measurement
set-up (Section 4.4) and discuss the results of our experiments (Section 4.5). We
conclude this chapter with a description of related work (Section 4.5.7).

4.1 Goal and Approach

The goal of our analysis is to determine the overhead introduced by the
ALIVE protocol in a contemporary network environment consisting of
802.11 hotspots and overlaying UMTS or GPRS networks [Køien03,
Banerjee04, Zhuang03]. We do not consider alternative hotspot
technologies such as HIPERLAN [Doufexi03], GSM micro-cells
[Tripathi98], and infrared [Brewer98].

We zoom in on mobile hosts that receive a channel via their 802.11
interface and execute a switch as a result of moving into the coverage area
of another 802.11 access provider. The reason for concentrating on this
type of scenario is that it might result in a mobile host being unable to
receive the channel for an extended period of time. This has two causes:

– An 802.11 handoff (in this case to an access point of the target
802.11 access provider) temporarily disconnect the mobile host

104 CHAPTER 4 ANALYSIS

from the 802.11 infrastructure [Velayos03, DeCleyn04, Vatn03,
Mishra03]; and

– Before initiating the switch, the switching controller on the mobile
host will first invoke the ALIVE protocol to discover the available
configurations of local aggregators on the target network
(configuration discovery). As a result, the mobile host will be
temporarily disconnected from the aggregator infrastructure as well.

The detachment from the aggregator infrastructure may last for quite
some time because the execution of the ALIVE protocol at the edge of the
target 802.11 network may introduce significant delays. This is because
802.11 links are known to be lossy under certain circumstances
[Eckhardt96, Hoene03, Aguayo04, Punnoose01] and because we
implemented the ALIVE protocol on top of SIP. SIP uses an exponential
back-off retransmission scheme to recover from packet loss [Rosenberg02a]
and uses a default back-off time of 0.5 seconds. Observe that overlay
networks such as UMTS or GPRS typically do not trigger SIP
retransmissions as a result of packet loss because they use a semi-reliable
link-level protocol (the Reliable Link Protocol, RLP [Banerjee04]).

As a result of the 802.11 handoff and the delay introduced by the ALIVE
protocol, there is a risk of the mobile host’s playout buffer (see Section 3.2)
depletes before the switch completes. To avoid this situation, the delay
introduced by the 802.11 handoff plus the delay of the ALIVE protocol
must be smaller than or equal to the amount of audio and video in the
playout buffer (in seconds). If this is the case, then we speak of a smooth
switch, which means that the playout buffer can continue to feed packets to
the player during and after the switch (cf. [Karrer01]).

Figure 4-1 shows an example of the type of scenario we focus on in this
chapter. The example is an extension of the example in Figure 3-1 and
shows Bob moving through two hotspots while receiving CNN TV. Bob’s
mobile host receives CNN TV from stream-it.com in both hotspots and
executes a handoff from hotspot2.nl to hotspot1.nl at point C. During the
handoff, Bob’s mobile host will be temporarily disconnected from the
802.11 infrastructure. It is not until after the handoff that it will be able to
interact with stream-it.com, the local aggregator of hotspot1.nl.

 DELAY COMPONENTS 105

A

C
D

hotspot1.nl

hotspot2.nl

B E

stream-it.com (F, L)

media-forward.nl (H, G)

cnn.com

media server

aggregator
Internet cloud

channel (CNN Radio)
movement, receiving via 802.11

UMTS coverage area
802.11 coverage area

begin reception
802.11 event

movement, receiving via UMTS

source

We assume that mobile hosts always have IP connectivity on the UMTS
overlay network (‘always-on’). This means that a switch to an aggregator
that is available through that network can usually take place quickly (e.g., at
point D in Figure 4-1 when Bob roams out of hotspot1.nl’s coverage area)
and is typically not time-critical. A switch from an aggregator on the overlay
network to an aggregator on the 802.11 network (e.g., at point B) is not
time-critical either, in this case because the mobile host does not need to
disconnect from the infrastructure. Switches between aggregators that
belong to overlay networks of different access providers (e.g., between
UMTS networks in bordering countries) are outside the scope of this thesis.

4.2 Delay Components

In this section, we provide an overview of the various delay components
that play a role in the ALIVE system when a mobile host moves into the
coverage area of another 802.11 access provider (see Section 4.1). The goal
of this overview is to put the delay introduced by the ALIVE protocol into
perspective, specifically to be able to contrast it with the other delay
components in the system (e.g., the delay to execute an 802.11 handoff).

For reasons outlined in Section 4.1, we concentrate on the operation of
the ALIVE protocol on 802.11 links. We isolate the delays caused by
802.11 links and use the data we found in the literature to provide best and
worst-case estimates for the other delay components. We assume that
backbone links are reliable (cf. the packet loss statistics on the Abilene
network [Abilene04]) and ignore local processing delays. The only

Figure 4-1. Roaming
through two hotspots.

106 CHAPTER 4 ANALYSIS

exception is the delay to authenticate a user, which may be substantial as
observed in [Mishra04, Pack02].

We distinguish two overall delay components: the ALIVE protocol delay
(for configuration discovery and switching) and the IP handoff delay. An IP
handoff connects a mobile host to another 802.11 network and establishes
IP connectivity on that network. An IP handoff includes the execution of
the 802.11 handoff, the authentication of the user on the target network,
and so on.

In the host architecture of Section 3.4, the connectivity handler is
responsible for running the protocols to execute an IP handoff (e.g., DHCP
[Droms99] to get an IP address for an interface), whereas the ALIVE
protocol entities are responsible for executing the ALIVE protocol.

We first consider the IP handoff delay (Section 4.2.1) and then the
ALIVE protocol delay (Section 4.2.2). We conclude this section with a
discussion on the overhead of the ALIVE protocol (Section 4.2.3), which
we express as the ratio of the ALIVE protocol delay and the IP handoff
delay.

4.2.1 IP Handoff Delay

Figure 4-2 shows the message sequence diagram of an IP handoff. The IP
handoff delay consists of five subdelays: a detection delay (not shown in
Figure 4-2), an 802.11 handoff delay, a network-level authentication delay,
and an interface configuration delay.

host
current

access point
target

access point

DHCP
server

AAA
proxy

AAA server
(home access provider)

802.11 handoff

Acknowledge

AAA request

AAA response

AAA request

AAA response

netw
ork

authentication delay
interface

configuration delay
802.11 handoff

delay

access provider 1 access provider 2

IP
 handoff delay

Figure 4-2. Delay
components to execute
an IP handoff to another
802.11 network.

 DELAY COMPONENTS 107

Detection Delay
In general, the detection delay is the delay it takes the switching controller
of a mobile host to detect that an event has occurred (e.g., on one of the
host’s interfaces). The detection delay depends on the mechanism used to
detect events (e.g., on RTCP Receiver Reports [Schulzrinne96a] that are
generated every 5 seconds to report packet loss rates and other information
pertaining to the quality of a stream).

802.11 Handoff Delay
The 802.11 handoff delay is the delay to connect a mobile host to another
802.11 access point. Average values for 802.11b handoff delays that have
been reported in the literature vary from around 40 to almost 600
milliseconds [Mishra03, Vatn03, Shin04, Velayos03]. Actual 802.11
handoff delays can vary considerably, for instance as a result of the 802.11
hardware that the mobile host and the access points use [Mishra03,
Vatn03], and the amount of competing traffic on the target network, either
as a result of traffic generated or received by other hosts on the target access
point’s frequency [Vatn03, Velayos03], or as a result of traffic from adjacent
frequency channels [Shin04].

The major delay component in an 802.11 handoff is the time that a
mobile host spends scanning for a target access point. The scanning delay
constitutes about 90% of the entire 802.11 handoff delay [Shin04,
Velayos03] and must take place after the mobile host disconnected from its
current access point. One solution to speed up the handoff process is to
selectively scan the 802.11 channels (11 channels in the US, 13 in most of
Europe) for available access points, which reduces the handoff delay to an
average of around 150 milliseconds [Shin04].

In the rest of this chapter, we assume that average 802.11 handoff delay
lies between 40 and 600 milliseconds:

40 ≤ t802_ho ≤ 600

where t802_ho is the 802.11 handoff delay.

Network-level Authentication Delay
The network-level authentication delay is the time it takes to authenticate a
user on the target 802.11 network. The network-level authentication delay
is highly deployment dependent. It for instance depends on the
authentication mechanism (e.g., password or certificates) and on the
protocol used in the target network to exchange authentication keys,
encryption keys, and so on (e.g., 802.1x [Mishra04, Pack02]). In an inter-
access provider handoff, the target access provider will typically authenticate

108 CHAPTER 4 ANALYSIS

a user with his home access provider, which requires a AAA interaction with
that provider [Køien03, Kwon02].

In this chapter, we assume that the mobile host authenticates a user
with an 802.11 network through a single request-response interaction with
a AAA proxy of the target 802.11 provider (see Figure 4-2) [Kwon02]. We
furthermore assume that the interaction between the AAA proxy and the
user’s home access provider also consists of a single request-response pair,
typically using a protocol like Diameter [Calhoun03].

As a result, the network-level authentication delay equals:

d(host, accessPoint) + drtx(host, aaaProtocol) +
2*d(aaaProxy, accessPoint) +
2*d(aaaProxy, homeAggregator) +
dauth(homeAggregator) +
d(accessPoint, host) + drtx(aaaProxy, aaaProtocol)

where d(src, dst) is the one-way delay to convey a message from source src
to destination dst, dauth(e) the delay to authenticate a user at entity e, and
drtx(src, protocol) the delay introduced by a source src to reliably deliver a
message over a network path that involves a wireless link.

drtx(src, protocol) depends on the specific higher-layer protocol that the
source uses to deliver the message, typically by means of retransmissions (cf.
SIP). The higher-layer protocol could for instance use an exponential back-
off retransmission scheme, in which case drtx(src, protocol) would equal b
+ 2*b + 4*b + … n*b, with b being the back-off time and n a power of
two. Notice that drtx(src, protocol), d(host, accessPoint), and d(accessPoint,
host) depend on the charateristics of the wireless link at the moment the
source (re)transmits a message (e.g., in terms of SNR, transmission rate,
and so on).

The delays on the up and down links between the host and the AAA
proxy may be different as a result of the varying conditions of the 802.11
radio link, which is why we have represented them as two separate delay
components (i.e., d(host, acessPoint) and d(accessPoint, host)). We have
assumed that the delays on the fixed network are symmetric (see the one-
way delay statistics of the Abilene network [Abilene04]), which is why the
round-trip delay on the fixed network is twice the one-way delay (e.g.,
2*d(aaaProxy, accessPoint)).

We will reuse the above notations and assumptions throughout this
section.

We estimate the authentication delay at a home access provider
(dauth(homeAggregator)) to lie between 1.1 second and 50 milliseconds,
which are values reported in [Mishra04] for intra-domain domain

 DELAY COMPONENTS 109

authentication. The 50 milliseconds is the average of an optimized 802.1x
authentication mechanism.

For the delay between the AAA proxy and the home access provider
(d(aaaProxy, homeAggregator)) we assume an average of at most 38
milliseconds, which is the average one-way delay on the Abilene network
from New York City to Los Angeles (measured from April 4 till May 4,
2004) [Abilene04]. The minimum delay between the proxy and the home
access provider is 0 milliseconds, which occurs when the proxy belongs to
the home access provider (i.e., the target access point belongs to the user’s
home access provider).

The access point and the AAA proxy are part of the same access
provider, so we assume an average one-way delay of 2 milliseconds between
these two entities [Kwon02].

Based on our own measurements (see Section 4.5), we assume a best-
case one-way delay across the 802.11 link (i.e., for d(host, accessPoint) and
d(accessPoint, host)) of 12 milliseconds. This is on an 802.11b network at
a 1 Mbps transmission rate, which is the typical rate at the edge of an
802.11 cell. The 12 milliseconds was measured at the socket-level and
therefore also includes operating system delays.

In the best case, the host and the AAA proxy also do not need to
retransmit any messages, which means that drtx(host, aaaProtocol) and
drtx(aaaProtocol, host) are zero.

Summing up, the network-level authentication delay is bounded by:

78 ≤ tnet-auth(aaaProtocol, homeAccessProvider) ≤

1180+ d(host, accessPoint) + drtx(host, aaaProtocol) +
d(accessPoint, host) + drtx(aaaProxy, aaaProtocol)

where tnet-auth(aaaProtocol, homeAccessProvider) is the total network-level
authentication delay for a specific network access protocol and a specific
home access provider.

Observe that in our analysis authentication takes place before the mobile
host receives an IP address (as is the case in 802.1x [Gast02, Mishra04,
Pack02]). Alternatively, authentication can also take place afterwards
[Kwon02].

Interface Configuration Delay
The interface configuration delay is the time it takes to configure a mobile
host’s 802.11 interface on the target network. At a minimum, this means
that the interface needs to be configured with an IP address and that it
needs the IP and MAC addresses of a default router on the 802.11 network.
In this thesis, we assume that DHCP [Droms99] gets the interface’s IP

110 CHAPTER 4 ANALYSIS

address and the IP address of the default router, while ARP is responsible
for getting the MAC address of the default router [Kwon02].

On a fixed Ethernet, the average DHCP delay can vary from a few
seconds to almost 15 seconds [Vatn98]. This is primarily the result of the
way in which different DHCP stacks implement Duplicate Address
Detection (DAD) [Vatn98], which is a procedure in which a host verifies
that no other hosts on the network are using a particular IP address. For
stateless autoconfiguration in IPv6 (i.e., without DHCP), the average DAD
delay is 1.5 seconds [Nakajima03].

In this chapter, we assume that DHCP skips DAD (as suggested by
[Vatn98] and [Nakajima03]), which reduces the DHCP delay to the link
delay. Since a DHCP sequence consists of four messages (a Discover, an
Offer, a Request, and an Acknowledge, see Figure 4-2), the DHCP delay is

2*d(host, accessPoint) + 2*drtx(host, dhcp) +
2*d(accessPoint, host) + 2*drtx(dhcpServer, dhcp) +
4*d(accessPoint, dhcpServer)

We also assume that the DHCP server is co-located with the default router
of the 802.11 network. As a result, the mobile host can learn the router’s
MAC address from the messages sent by the DHCP server, which avoids the
extra ARP round-trip over the link [Vatn98]. In this case, we can
furthermore assume that the average one-way delay between the access
point and the DHCP server is 2 millisecond since both will be on the same
network. Again assuming a best-case one-way over-the-air delay of 12
milliseconds, the interface configuration delay is bounded by:

56 ≤ tif-config(dhcp) ≤ 2*d(host, accessPoint) + 2*drtx(host, dhcp) +

 2*d(accessPoint, host) + 2*drtx(dhcpServer, dhcp) + 8

where tif-config(dhcp) is the interface configuration delay using DHCP.
The configuration delay is usually followed by a location update delay (cf.

Mobile IP [Solomon98], SIP [Wedlund99], and so on), which is the time it
takes to inform correspondent hosts and ‘home agents’ of the mobile host’s
new IP address. In the ALIVE system, these location updates are only
necessary if the switching controller on the mobile host has used the
configuration notification service to subscribe to the events of at least one
aggregator (see sections 3.4.6 and 3.6.2). We assume that location updates
in the ALIVE system take place after the completion of a switch, which
means the associated delay is not part of our analysis. Observe that a
location update might be more critical for other applications that run on
the mobile host (e.g., a telephony application).

 DELAY COMPONENTS 111

Aggregator Discovery Delay
The aggregator discovery delay is the time it takes to discover one or more
local aggregators on the target 802.11 network. We assume that the
connectivity handler piggybacks the aggregator request and response
messages onto DHCP messages. In particular, we assume that DHCP
Acknowledge messages will contain the URIs that point a mobile host to
the local aggregators on the network [Schulzrinne02]. As a result, the
aggregator discovery delay does not any additional delay in our analysis.

4.2.2 ALIVE Protocol Delay

Figure 4-3 shows the message sequence diagram of the ALIVE protocol in
case it detects a new local aggregator on the target 802.11 network. To
keep the figure readable, it does not show the SIP ACK messages. Figure 4-3
also assumes that the mobile host’s current aggregator is no longer
reachable on the target 802.11 network, which means that the switching
controller on the mobile host cannot send a release message to the current
media server to release the multimedia session (see Section 3.4). To
simplify our analysis, we assume that the switching controller decides not to
discover the capabilities of the local aggregators on the target 802.11
network. As a result, we omit capability discovery from our analysis (Figure
4-3 therefore shows the capability discovery interactions as dashed arrows).

host access point front-end front-end

establishment response

AAA request

AAA response

configuration query delay

INVITE

422

INVITE

200
target

media server

target
aggregator

establishment request

capability request

capability response
establishm

ent
dalay

multimedia streams

home
aggregator

sw
itching delay

capability
discovery delay

Figure 4-3. Delay
components of the
ALIVE protocol on an
802.11 network.

112 CHAPTER 4 ANALYSIS

Configuration Query Delay
The configuration query delay for a specific aggregator depends on whether
the switching controller has already authenticated the user with the
aggregator. If this is not the case, then the switching controller first sends
an INVITE (a combined authentication-configuration request, see Section
3.7) to the aggregator’s front-end (see Figure 4-3). The ALIVE protocol
entity on the mobile host may need to resubmit the INVITE request at
most twice before it will be able to receive a 200 OK. Specifically, it will
need to resubmit the INVITE if the front-end does not accept the refresh
interval in the INVITE, or when it did not include the user’s credentials in
the INVITE. We will assume that the latter will not occur, which means
that the maximum configuration discovery delay involves two round-trips
with the front-end and one-round trip with the home aggregator:

2*d(host, accessPoint) + 2*drtx(host, sip) +
2*d(accessPoint, host) + 2*drtx(frontEnd, sip) +
4*d(frontEnd, accessPoint) +
2*d(frontEnd, homeAggregator) +
dauth(homeAggregator)

If a switching controller has already authenticated a user with an aggregator
(not shown in Figure 4-3), the configuration query delay is the delay
between the transmission of a re-INVITE (configuration request) and the
arrival of the 200 OK (configuration response). This situation can for
instance occur when the same local aggregator was also bound to the old
802.11 network. In this case, the configuration query delay equals:

d(host, accessPoint) + drtx(host, sip) +
d(accessPoint, host) + drtx(frontEnd, sip) +
2*d(frontEnd, accessPoint)

We assume that the local aggregators on the target 802.11 networks are in
the ‘network vicinity’ of the access provider (i.e., a limited hops a way from
the access provider’s network). We therefore assume a maximum average
delay between the access point and the front-end of the local aggregator of
10 milliseconds, which is the average rounded-off one-way delay on the
Abilene network from New York City to Chicago [Abilene04]. In the most
extreme case, the aggregator and the access provider will be co-located in
one domain (cf. the Supplementary Service Providers in [Trossen03]), in
which case we assume that the average one-way delay between the access
point and the aggregator’s front-end is 2 milliseconds.

As before (see Section 4.2.1), we assume a best-case one-way delay
across the wireless link of 12 milliseconds, a minimum for drtx of 0 seconds,

 DELAY COMPONENTS 113

a maximum one-way delay to the user’s home aggregator of 38
milliseconds, and a maximum authentication delay of 1.1 seconds. Using
the authenticated case as the best case, the configuration query delay on an
802.11 network is bounded by:

28 ≤ tquery ≤ 2*d(host, accessPoint) + 2*drtx(host, sip) +

 2*d(accessPoint, host) + 2*drtx(frontEnd, sip) + 1216

where tquery is the configuration query delay.
The ALIVE protocol entity on the mobile host typically transmits

multiple INVITEs to multiple front-ends (see Section 3.6), in which case
the total configuration query delay is determined by the highest query delay
of the individual aggregators (e.g., as a result of varying conditions of the
802.11 link when the 200 OKs arrive at the access point). The ALIVE
protocol entity on the mobile host can however cap the discovery time at a
certain threshold (see Section 3.4).

Switching Delay
In general, a switching controller can execute a switch in a number of ways,
for instance in a break-before-make fashion (first release the multimedia
session with the current server, then establish a new session with the target
media server) or in a break-before-make fashion (the other way around). In
our analysis, we assume that the switching controller can no longer reach
the current media server via the target 802.11 network and therefore only
transmits an establishment request to the target media server. As a result,
the switching delay is the delay between the transmission of the
establihsment request and the arrival of the response, which corresponds to
twice the one-way delay from the host to the target media server. Also
assuming that the target media server is a SIP server, the switching delay
equals:

d(host, accessPoint) + drtx(host, sip) +
d(accessPoint, host) + drtx(targetMediaServer, sip) +
2*d(targetMediaServer, accessPoint)

We assume that the media servers of an aggregator are co-located with the
aggregator’s front-end, which means that the maximum one-way delay
between a media server and an access point is 10 milliseconds. The
minimum one-way delay is 2 milliseconds (if the aggregator and the access
provider are co-located in one domain). The switching delay is therefore
bounded by

28 ≤ tswitch ≤ d(host, accessPoint) + drtx(host, sip) +

114 CHAPTER 4 ANALYSIS

d(accessPoint, host) + drtx(targetMediaServer, sip) + 20

where tswitch is the switching delay.

4.2.3 ALIVE Protocol Overhead

One way to calculate the overhead of the ALIVE protocol is to determine
the ratio of the ALIVE delay and the best-case IP handoff delay. That is:

(tquery + tswitch)/174

where 174 milliseconds in the sum of the lower bounds of t802_ho, tnet-

auth(aaaProtocol, homeAccessProvider), and tif-config(dhcp).
If we use the minimum values for tquery and tswitch, then the ratio equals

(28+28)/174, which is approximately 32%. That is, the best-case ALIVE
delay is around 32% of the best-case IP handoff delay.

In the rest of this chapter, we analyze the non-best-case values of
2*d(host, accessPoint) (and vice versa) and drtx(host, sip), in particular
under different 802.11 network conditions.

4.3 Experiments

As we have seen in Section 4.2.3, the configuration discovery delay of the
ALIVE protocol depends on the delay on an 802.11 link and on the time it
takes a SIP sender (a switching controller or a front-end) to deliver a
message to a SIP receiver (i.e., drtx). Both of these factors in turn depend on
the packet loss characteristics on the wireless link.

In the ALIVE system, SIP runs on top of UDP (see Section 3.7), which
means that the messages of a transaction may get lost. To reliably execute
transactions over UDP, SIP uses an exponential back-off retransmission
mechanism [Rosenberg02a]. The default back-off time of this mechanism is
0.5 seconds, which means that the loss of a single SIP message results in a
delay of 0.5 seconds, two consecutive losses in a delay of 0.5 + 2*0.5
seconds, three consecutive losses in 0.5 + 2*0.5+ 4*0.5 seconds, and so
on. Delays of this magnitude would dominate the configuration discovery
delay, in particular when aggregators cache authentication state to reduce
the authentication delay and when mechanisms like selective scanning, pre-
authentication, and selective DAD (see Section 4.2.1) are used at the
network-level.

In the rest of this chapter, we therefore experiment with the
retransmission behavior of SIP transactions, specifically over 802.11b links.
The goal of our experiments is to determine how different network-level

 EXPERIMENTS 115

packet loss parameters (e.g., signal to noise ratio and transmission rate)
influence the retransmission behavior of a SIP transaction. We concentrate
on mobile hosts that are at the edges of 802.11 cells, which is where the
ALIVE protocol typically comes into play (see Section 4.1).

The results of our experiments enable mobile hosts to dimension their
playout buffer such that switches can take place in a smooth manner, in
particular during an 802.11 handoff. A spin-off is that our experiments
might assist access providers in dimensioning their 802.11 infrastructure in
such a way that it increases the probability that a mobile host can smoothly
switch to another aggregator.

In this section, we take a more detailed look at SIP’s retransmission
scheme (Section 4.3.1) and discuss the 802.11 parameters that we vary in
our experiments (Section 4.3.2).

4.3.1 SIP Retransmissions

SIP only retransmits messages when it runs on top of UDP. The
retransmission scheme is exponential back-off with a default back-off timer
of 0.5 seconds [Rosenberg02a]. A retransmitted SIP messages is a duplicate
of the original message, which means that a retransmitted message carries
the same dialog and transaction identifiers (see Section 3.7.2) as the
original. Figure 4-4 shows an example of SIP’s retransmission behavior.

SIP server

100 Trying

INVITE

SIP client

200 OK

ACK

INVITE

200 OK

INVITE
0.5 sec

1 sec

2 sec 0.5 sec

without an ACK,
continue to
retransmit the 200
OK for at most
64*T seconds

1 sec

without a 200 OK,
continue to

retransmit the
INVITE for at most

64*T seconds

after a 200 OK,
continue to react to

200 OK
retransmissions
with an ACK for

64*T seconds

After it sent the original INVITE, a SIP client retransmits an INVITE for at
most 32 seconds or until it receives a response (100 Trying or 200 OK),
whichever happens first. As a result, a SIP client can retransmit an INVITE
at most 6 times (i.e., transmit it 7 times), specifically at 0.5, 1.5, 3.5, 7.5,
15.5, and 31.5 seconds after the transmission of the original INVITE.

A SIP server retransmits an 200 OK for at most 32 seconds or until it
receives an ACK, whichever happens first. A SIP server follows the same

Figure 4-4. Example of
SIP’s retransmission
behavior.

116 CHAPTER 4 ANALYSIS

retransmission scheme as a SIP client, except that it caps the back-off time
at 4 seconds. As a result, a SIP server can retransmit a 200 OK at most 10
times (i.e., 11 transmissions) after the transmission of the original 200 OK
(at 0.5, 1.5, 3.5, 7.5, 11.5, 15.5, 19.5, 23.5, 27.5, and 31.5 seconds after
the transmission of the first 200 OK).

We consider a SIP transaction failed if (1) the client did not receive a
200 OK 32 seconds after it sent the original INVITE, or (2) when the
server did not receive an ACK 32 seconds after it sent the original 200 OK.
We note that the SIP RFC does not explicitly call the first case a transaction
failure. In addition, if a 200 OK reaches the client but the ACK never gets
back to the server, then the SIP RFC does not consider that a transaction
failure either because an ACK is not part of an invite transaction that
involves a 200 OK.

A SIP server transmits a provisional response when it receives an
INVITE, either the first one or a retransmission. It does however not
actively retransmit the provisional responses. Similarly, SIP clients only
transmit an ACK when they receive a 200 OK (original or retransmission)
and do not actively retransmit ACKs either.

4.3.2 802.11 Packet Loss

In general, packet loss on an 802.11 network depends on a wide variety of
parameters [Eckhardt96, Hoene03, Aguayo04]. In this thesis, we
experiment with four them on 802.11b links:

– Signal strength. The signal strength influences the probability that a
message is lost or corrupted when it is in transit to its destination.
The lower the signal strength, the higher the probability that a packet
will get lost or corrupted [Hoene03, Punnoose01, Doufexi03,
Aguayo04];

– Retry limit. 802.11 senders retransmit a frame until they get an
acknowledgement from the receiver [Gast02]. The retry limit
indicates how often a sender will retransmit unacknowledged frames
before it considers them lost. The higher the retry limit, the lower
the probability that the application will have to retransmit messages
itself. However, higher values of the retry limit also increase the time
it takes to get a message to the other end [Hoene03]. Higher retry
limits might furthermore increase the medium access delay as
802.11 senders do not accept a new frame from the application until
the previous one was either acknowledged or lost [Punnoose01].

– Background traffic. Since 802.11 is a shared-medium network, traffic
from other hosts on the network can increase the medium access
delay as well as the number of collisions [Aguayo04]. Both factors
can increase the packet loss rate on the network.

 MEASUREMENT SET-UP 117

– Bit rate. 802.11b supports four bit rates: 1, 2, 5.5, and 11 Mbps. The
network is more reliable at 1Mbps than at 11 Mbps [Hoene03] as a
result of the different modulation schemes that an 802.11 radio uses
at different rates.

In our experiments, we use low signal strengths and usually set the
transmission rate to 1 Mbps. This corresponds to the situation where a
mobile host is at the edge of an 802.11b network. We use different retry
limits and run experiments with and without background traffic. We refer
to Section 4.5 for a discussion on the results.

Other sources of packet loss in 802.11 networks include spatial
distribution, interference from other sources (e.g., Bluetooth
[Punnoose01]), effects of multi-path, and so on. We refer to [Eckhardt96,
Hoene03, Aguayo04] for an elaborate overview.

4.4 Measurement Set-up

This section discusses the set-up that we used to conduct our experiments.
We first provide an overview of the set-up (Section 4.4.1) and then
consider its basic operation (Section 4.4.2) and its physical arrangement
(Section 4.4.3). We conclude with an overview of the hard and software we
used (Section 4.4.4).

4.4.1 Overview

Figure 4-5 shows the high-level organization of our measurement set-up.
The main components of the set-up are a SIP client and a SIP server that
execute a series of SIP transactions over an 802.11b link. We refer to such
a series of transactions as a (transaction) run. The other components in the
set-up are a network sniffer and a traffic generator.

The whole set up is controlled by a script, which reconfigures the
802.11 network, the traffic generator, and the sniffer after each transaction
run, and then starts a new run. The control script transmits its instructions
via a fixed network (Ethernet) and connects to the other components
through telnet connections.

The SIP client and SIP server are based on the Open SIP stack (version
1) [OpenSIP], which we enhanced with our own software to make
measurements. The SIP client is a laptop with a Prism2 802.11b card. The
SIP server is a PC with the same card, but configured to acts as an access
point. The sniffer and the traffic generator are separate laptops, both with
an Orinoco gold 802.11b card. The sniffer uses tcpdump [tcpdump] to
capture packets; the traffic generator uses the tool jtg [jtg] to generate

118 CHAPTER 4 ANALYSIS

traffic. The PC and the laptops all run on Linux. We refer to Table 4-1 at
the end of this section for more details.

802.11b

commands

SIP server/
access point

traffic
generator

sniffer

SIP client

control
script

control
script

com
m

ands

com
m

ands

commands

4.4.2 Basic Operation

Figure 4-6 shows the basic operation of the control script, which runs on
the SIP client.

The control script is a nested for-loop that reconfigures the 802.11b
network at each iteration and then starts a new transaction run. To
reconfigure the network, the script changes the signal to noise ratio (SNR)
at the SIP client, the retry limit and the transmission rate at the SIP client
and the SIP server, and the amount of background traffic injected into the
network by the traffic generator (see Section 4.4.1).

To change the SNR at the client, the control script modifies the
transmission power of the access point (the SIP server). Due to
hardware/firmware limitations, we could not change the transmission
power of the SIP client, which means that it is always transmitting at the
default transmission power (-3 dBm). As a result, our set-up is asymmetric.
This means that the INVITEs and ACKs of a transaction will generally arrive
at the SIP server, but that the 200 OKs and 100 Tryings might be lost as a
result of a low SNR value.

After it has reconfigured the network, the control script starts a new
transaction run by starting the SIP server and the SIP client. At that point,
the script also restarts the sniffer and the traffic generator. Figure 4-6 shows
that the control script transmits a start commands to the remote devices
(SIP server, traffic generator, and sniffer) and that these commands also
contain the new 802.11 network parameters.

Figure 4-5. High-level
organization of the
measurement set-up.

 MEASUREMENT SET-UP 119

for background_load in “64” “128” “384” “512” … do # kbps
for transmission_rate in “1” “2” “5.5” “11” do

for transmission_power in “-30” “-31” “-32” “-33” … do # dBm
for retry_limit in “0” “1” “2” … “8” do

---- Start new transaction run ----
Set transmission rate and retry limit of card
set_wlan_local(retry_limit, transmission_rate)
Start sniffer
send_command_to(sniffer, “start”, bytes_per_packet)
Start SIP server stack
send_command_to(access_point, “start”, transmission_power, retry_limit, transmission_rate)
Start traffic generator
send_command_to(traffic_generator, “start”, background_load)
Start SIP client stack. Automatically exits when transaction run is done.
start_client()
---- Transaction run completed ----

done
done

done
done

The SIP client initiates a series of transactions with the SIP server at
random (but configurable) intervals. The SIP client and server log the
(re)transmission properties of each transaction, for instance in terms of the
local time at which a message arrived, how many 200 OKs were
transmitted, and if the transaction succeeded or failed. Figure 4-7 shows
where we made these measurements in the SIP stack.

SIP
 transaction layer (U

A
S)

U
D

P

INVITE

200

200

200

ACK

SIP client SIP server

SIP
 transaction layer (U

A
C

)

U
D

P

802.11b link

measurement point

Using the information provided by the 802.11 card, the SIP client also
makes signal-to-noise ration (SNR) measurements and logs the average
SNR during a transaction. The SIP client calculates the average SNR by
measuring the instantaneous SNR when it (re)transmits/(re)receives certain

Figure 4-6. Basic
operation of the control
script.

Figure 4-7.
Measurement points in a
SIP transaction.

120 CHAPTER 4 ANALYSIS

messages (e.g., INVITEs and 200 OKs). The SIP client and server store
their transaction logs in memory in order not to affect the measurements
through I/O operations. Multiple transactions may be in progress at the
same time if the SIP client initiates a new transaction before the previous
one has terminated, typically as a result of packet loss on the wireless link.

While the SIP client and server are executing transactions, the sniffer
makes a network-level log of the messages it captured on the wireless link.
We set the sniffer is in monitor mode, which means that it captures all the
packets that traverse the wireless link, including 802.11 retransmissions.
The sniffer dumps the packets it captured to file on-the-fly. The maximum
size of the SIP messages we used is around 900 bytes, which means that
they fit in a single UDP packet (i.e., no IP or 802.11 fragmentation).

When the SIP client has initiated the last transaction of a series, it waits
2*32 seconds for any ongoing transactions to finish. The reason for this
dampening period is that the worst-case transaction requires 6 INVITE
retransmissions (31.5 seconds) and 10 200 OK retransmissions (another
31.5 seconds).

After the dampening period, the SIP client transmits a stop command to
the SIP server. At that point, both of them dump their logs to file and exit.
This terminates the current iteration of the control script.

To avoid ARP delays, the control script inserts a manual entry for the
access point in the SIP client’s ARP cache before it enters the nested for-
loop (not shown in Figure 4-6).

Analysis
Before analyzing the measurements, we first fed the logs of the SIP client,
the SIP server, and the sniffer through an integration script. This script
creates an integrated log by matching the client-side measurements of a
specific transaction with the measurements of that transaction made at the
server and at the sniffer. We then used Excel and various Visual Basic
scripts to analyze the data.

4.4.3 Physical Environment

Figure 4-8 shows how we physically arranged the machines in the set-up.
The distance between the SIP client (a laptop) and the SIP server (the
access point/PC) is about 1.20 meters. The traffic generator is located
about halfway between the SIP client and the SIP server. The sniffer is
about 20 centimeters away from the SIP server, which enables it to capture
packets sent by the SIP server (which may operate at a low transmission
power) as well as packets sent by the SIP client (which operates at full
power).

 MEASUREMENT SET-UP 121

To create very low signal levels at the SIP client (i.e., ‘put’ it at the egde
of the 802.11 cell), we had to wrap the access point’s network card in foil
(see the enlargement in Figure 4-8). The reason is that the card’s firmware
supports a lowest transmission power of -43 dBm, which still results in a
good SNR at the SIP client.

SIP client
(mobile host)

sniffertraffic
generator

SIP ser ver
(access point)

~1.20 m

ethernet

ethernet

ethernet

ethernet

SIP client
(mobile host)

sniffertraffic
generator

SIP ser ver
(access point)

~1.20 m

ethernet

ethernet

ethernet

ethernet

The whole set-up is located in a computer lab. The 802.11 sniffing tool
Kismet [kismet] showed no other networks on the channel that the access
point uses (11). We configured other 802.11b networks under our control
to make use of channels 1 through 7 to minimize interference. Networks
that were not under our control already used channels in the 1-7 range. To
further ensure that there were no interfering 802.11 networks, we also
checked some of the sniffer’s logs for foreign beacons. There turned out to
be none, which indicates that the environment was indeed free from
interference of other 802.11 networks.

The laptops in the set-up run on AC power to exclude influences from
battery drain (e.g., lower processor speeds).

4.4.4 Hardware and Software Used

Table 4-1 provides an overview of the hard and software that we used in our
set-up.

Figure 4-8. Physical
arrangement of the
measurement set-up.

122 CHAPTER 4 ANALYSIS

 Device 802.11 Software
SIP client Toshiba Satellite Pro

2400 laptop; 500
MHz Intel Pentium III
Celeron processor;
192 MB RAM; Redhat
Linux 2.4.20-8

Lynksys WPC11 PCMCIA
card, version 3; hostap
driver, version 0.2.4 (see
http://hostap.epitest.fi)

Open SIP [OpenSIP],
version 1, enhanced with
measurement code

SIP server PC, 2 GHz Intel
Pentium IV; 1 GB
RAM; Debian Linux
2.6.8.1

Lynksys WPC11 PCMCIA
card, version 3; hostap
driver, version 0.2.5 (see
http://hostap.epitest.fi)

Open SIP [OpenSIP],
version 1, enhanced with
measurement code

Sniffer Sony Vaio laptop;
Redhat Linux 2.6.8;
1600 MHz Intel
Pentium M processor;
1GB RAM

Orinoco Gold card,
Lucent/Agere firmware
version 6.06; driver patch
0.13e for monitoring mode
support (see
http://airsnort.shmoo.com/
orinocoinfo.html)

tcpdump [tcpdump]; libcap
3.8.3, development version
(October 7, 2004);
tcdpump 3.8.3,
development version
(October 7, 2004)
[tcpdump]

Traffic generator Toshiba Tecra 8200
laptop; 750 MHz Intel
Pentium III processor;
255 MB RAM; Redhat
Linux 2.4.20-8

Orinoco Gold card,
Lucent/Agere firmware
version 8.72

jtg [jtg]

Control script - - Bash/expect [expect]
Integration script - - Bash; libcap 0.8.3;

tcdpump 3.8.3,
development version
(September 12, 2004)
[tcpdump]

4.5 Results

In this section, we consider the results of our experiments. The goal of
these experiments is to determine how different 802.11 network
parameters influence the retransmission behavior of a SIP transaction,
specifically at the edges of an 802.11 cell (see Section 4.1). Since our
measurement set-up is asymmetrical (see Section 4.4.2), we concentrate on
the retransmission behavior of SIP transactions in terms of retransmitted
200 OKs.

Table 4-2 provides an overview of the 802.11 setting in the experiments
we conducted. The 802.11 transmission rate is usually 1 Mbps, since this is
typical rate for mobile hosts at the edge of an 802.11 cell. For the same
reason, the SNR is usually at the ‘low’ end of the SNR spectrum, typically
varying from around 0 to 17 dB. In all of these experiments, the SIP client
randomly initiates a transaction either every second or every 2 seconds.

Table 4-1. Hard and
software used in the
measurement set-up.

 RESULTS 123

Experiment SNR Transmission rate Retry limit Background Sections
1,2 Low, fixed 1 Mbps 0 0 Mbps 4.5.1, 4.5.2
3 Low, variable 1 Mbps 0, 2, 4, 6, 8 0 Mbps 4.5.3
4 Low, variable 1 Mbps 0, 2, 4, 6, 8 1 Mbps 4.5.4
5 High, fixed 1 Mbps 0, 2, 4, 6, 8 variable 4.5.5
6 Low, variable 2, 5.5, 11 Mbps 0, 2, 4, 6, 8 0 Mbps 4.5.6

Note that the first two experiments merely serve to determine the length of
a transaction run and to check that our measurement set-up is stable.

In Section 4.5.7, we will use the results of the above experiments to
calculate the worst-case delays of the ALIVE protocol based on the formulas
of Section 4.2.3.

4.5.1 Experiment 1: Length of a Transaction Run

The goal of our first experiment was to find an appropriate value for the
length of the transaction runs executed by the SIP client and the SIP server
(see Section 4.4.1). To accomplish this, we had to find the number of
transactions in a run such that that the outcome of our measurements (e.g.,
in terms of the average number of transmitted 200 OKs per transaction)
would not significantly change if we were to increase the number of
transactions in the run.

To find this value, we executed a two test runs, A and B. Each run
consisted of 5000 transactions, so that we could average our results over a
run of m transactions (1 ≤ m ≤ 5000). We set the 802.11 network
parameters to their worst case values (low transmission powers, no 802.11-
level retries, and a 1 Mbps transmission rate) so that the outcome would
also be applicable to experiments executed under better network
conditions. The transmission power of the access point was –36 dBm
during run A and –35 dBm during run B, which ‘put’ the SIP client at the
edge of an 802.11 cell. As a result of this setting, the average SNR at the SIP
client is lower during run A than during run B. We executed both runs
without any background traffic.

Figure 4-9 shows the average number of transmitted 200 OKs per
transaction for experiment A. The x-axis shows the number of transactions
in a run (m) as multiples of 5 (5 ≤ m ≤ 1500). The line continues in the
same manner for 1500 < m ≤ 5000 (not shown). The error bars indicate
the standard deviation.

The curve in Figure 4-9 shows that the average number of transmitted
200 OKs fluctuates until around m = 500. This suggests that runs of 500
transactions are appropriate. Figure 4-9 also shows that the standard
deviation stabilizes at around m = 200. The outcome of run B (not shown)
is similar. In that case, the fluctuations in the average transmitted 200 OKs
disappear at around m = 300.

Table 4-2. Experiments
overview.

124 CHAPTER 4 ANALYSIS

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8

0 200 400 600 800 1000 1200 1400

transactions per run (multiples of 5)

av
er

ag
e

tra
ns

m
itt

ed
 2

00
 O

K
s

Figure 4-10 shows the average SNR per transaction for the first 1500
transactions of run A. The curve in Figure 4-10 averages around 2.8 dB,
which indicates that the run was executed under stable radio conditions.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 200 400 600 800 1000 1200 1400

transaction number

av
er

ag
e

S
N

R
 p

er
 tr

an
sa

ct
io

n
[d

B
]

4.5.2 Experiment 2: Stability of Set-up

The goal of our second experiment was to determine if our measurement
set up is stable. We consider the set-up stable if the average delay between
the transmission of the first INVITE and the reception of the corresponding
200 OK stabilizes. The idea is that the delay between an INVITE and a 200
OK includes the processing delay of the SIP server’s stack, but not that of
the SIP stack on the client. If the average delay does not stabilize (e.g., it
continues to increase), then this is an indication that the server stack is
behaving abnormally (e.g., it continues to build up transaction state).

Figure 4-9. Average
number of transmitted
200 OKs plus standard
deviation during stability
experiment A.

Figure 4-10. Average
SNR per transaction for
test run A.

 RESULTS 125

Similarly, if the average delay between a 200 OK and an ACK on the server
does not stabilize, then this is an indication that the client SIP stack is
behaving abnormally. Observe that we configured both stacks such that they
removed all of a transaction’s state at the end of the transaction’s maximum
life-time (32 seconds after the reception of the first 200 OK for the client
part of transaction, and 32 seconds after the transmission of the first 200
OK for server side transactions).

To check the stability of our set-up, we reused the data we gathered
during runs A and B of Section 4.5.1. Figure 4-11a shows the average
INVITE-200 OK delay and the average 200 OK-ACK delay per transaction
for run A. The x-axis represents the number of transactions m in the run,
again in multiples of 5 (5 ≤ m ≤ 5000). The average INVITE-200 OK
delay stabilizes at around 6 seconds, whereas the average 200 OK-ACK
delay stabilizes at around 5.8 seconds. The average 200 OK-ACK delay is
probably somewhat higher because it includes the processing delay of the
SIP client, which is a laptop that is less powerful than the SIP server (a PC).
The results of experiment B (not shown) are similar, except that the average
INVITE-200 OK delay stabilizes at around 1.7 seconds and the average 200
OK-ACK delay at around 1.9 seconds. Figure 4-11b shows that the standard
deviation of run A stabilizes at around 7 seconds for the INVITE-200 OK
delay, and at around 7.2 seconds for the 200 OK-ACK delay.

126 CHAPTER 4 ANALYSIS

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

transactions per run (multiples of 5)

st
de

v
de

la
y

[s
ec

on
ds

]

INVITE-200 OK 200 OK-ACK

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

transactions per run (multiples of 5)
av

er
ag

e
de

la
y

[s
ec

on
ds

]

INVITE-200 OK 200 OK-ACK

(a)

(b)

For completeness, we also measured the processing delay of the SIP stack
on the SIP client and on the SIP server. Figure 4-12a shows the average
delay per client transaction to transmit an INVITE and handle an incoming
200 OK; Figure 4-12b shows the average time for a server transaction to
handle an incoming INVITE and to transmit a 200 OK. The x-axis
represents the number of transactions in a run in multiples of five.

All four curves in Figure 4-12 stabilize quickly, which further suggests
that the entire set-up is stable. Figure 4-12b also shows that the processing
delays of the SIP stack on the server is neglectable. Figure 4-12a shows that
the average processing delay on the client (around 4.5 milliseconds) is non-
neglectable, but that it is stable.

Figure 4-11. Average
delays between an
INVITE and a 200 OK
and between a 200 OK
and an ACK for
transaction run A (a) and
the associated standard
deviation. /* Dec-1-
2004-stability,
experiment 3 */ /* doe
in normale omgeving; in
worst case krijg je grote
sprijding; anders ziet
figuur met grote stdev er
raar uit */

 RESULTS 127

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

0,0004

0 200 400 600 800 1000 1200 1400

transactions per run (multiples of 5)

av
er

ag
e

pr
oc

es
si

ng
 d

el
ay

 [s
ec

on
ds

]

INVITE reception 200 OK transmission

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 200 400 600 800 1000 1200 1400

transactions per run (multiples of 5)

av
er

ag
e

pr
oc

es
si

ng
 d

el
ay

 [s
ec

on
ds

]

INVITE transmission 200 OK reception

(a)

(b)

4.5.3 Experiment 3: At the Edge of an Unloaded 802.11 Network

The goal of experiment 3 is to analyze the retransmission behavior of SIP
transactions at the edge of an 802.11 cell. We measure the percentage of
transactions that require retransmissions for various SNRs and 802.11 retry
limits as well as the associated SIP back-off delay. The 802.11 transmission
rate in this experiment is 1 Mbps and the network does not carry any
competing traffic.

Experiment 3 is based on 145 transaction runs, each consisting of 500
transactions. The transaction runs took place at 29 different SNR levels
between 0 and approximately 17 dB and using five different 802.11 retry
limits (0, 2, 4, 6, and 8).

Figure 4-12. Client-side
SIP processing delays
(a) and server-side
processing delays (b)
for run A. /* Dec-1-
2004-stability,
experimenten 3 */ /*
client: verwaarloosbaar
want constant +
gebruiken we niet in
verder metingen want we
meten onder de client
SIP stack */

128 CHAPTER 4 ANALYSIS

Transmitted 200 OKs
Figure 4-13 shows the relative number of 200 OK transmissions for the 145
transaction runs of experiment 3. We plot this as a function F(t, r, s), which
represents the percentage of successful transactions that required t 200 OK
transmissions in the transaction run at SNR level s (in dB) and at retry limit
r. Figure 4-13a through Figure 4-13e shows F(t, r, s) for the five retry limits
we consider in this experiment (0, 2, 4, 6, and 8).

While the number of 200 OK transmissions in a transaction lies in the
range 1-11 (see Section 4.3.1), we only plot F(t, r, s) for the range 1
through 5 to increase the readability of Figure 4-13. The graphs in Figure 4-
13 also show E(r, s), which is the number of transactions that failed at a
particular retry limit r and SNR s.

 RESULTS 129

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

Fr
eq

ue
nc

y
[%

]

F(1,2,s) F(2,2,s) F(3,2,s) F(4,2,s) F(5,2,s) E(2,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

Fr
eq

ue
nc

y
[%

]

F(1,0,s) F(2,0,s) F(3,0,s) F(4,0,s) F(5,0,s) E(0,s)

(c) (d)

(e)

(a) (b)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

Fr
eq

ue
nc

y
[%

]

F(1,4,s) F(2,4,s) F(3,4,s) F(4,4,s) F(5,4,s) E(4,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

Fr
eq

ue
nc

y
[%

]

F(1,6,s) F(2,6,s) F(3,6,s) F(4,6,s) F(5,6,s) E(6,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

Fr
eq

ue
nc

y
[%

]

F(1,8,s) F(2,8,s) F(3,8,s) F(4,8,s) F(5,8,s) E(8,s)

As expected, Figure 4-13 shows that an increased 802.11 retry limit
increases the percentage of SIP transactions that only need to transmit one
200 OK. For example, without any retries, 65% of the transactions requires
only one 200 OK transmission at 5 dB (i.e., F(1, 0, 5) = 65%). With 2 or
more retries, almost 100% of the transactions requires only one 200 OK
transmission at 5 dB (e.g., F(1, 2, 5) equals around 95%). Figure 4-13 also
shows that an increase in the retry limit enables SIP transactions to deliver
200 OKs in one transmission at lower SNRs. For example, without retries,
the SNR must be around 7.4 dB for 90% of the SIP transactions to deliver a
200 OK in one shot (i.e., F(1, 0, 7.4) = 90%). For 2 retries this is at
approximately 4.4 dB and for 4, 6, and 8 retries it is around 3.5 dB.

Figure 4-13.
Transmission behavior
of SIP transactions. The
curves indicate the
percentage of SIP
transactions that
required t 200 OK
transmissions (1 ≤ t ≤
5). The variables are the
SNR and the retry limit
(0, 2, 4, 6, and 8 in
graphs a, b, c, d, and e,
respectively). The
constants are the
transmission rate is (1
Mbps) and the
background load (0
Mbps).

130 CHAPTER 4 ANALYSIS

Fall-off Regions
The dotted rectangles in Figure 4-13 represent what we call fall-off regions,
which are the dB ranges in which F(1, r, s) falls from 90% to 10% (cf.
[Aguayo04]). Within a fall-off region, the sum of the other F(t, r, s)’s (2 ≤ t
≤ 11) plus E(r, s) increases from 10% to 90%.

Figure 4-13 shows that 802.11 retransmissions decrease the width of the
fall-off region. For example, the fall-off region is 4.6 dB wide without any
802.11 retries (Figure 4-13a) and around 1.7 to 2.5 dB wide with retries
(Figure 4-13b-e). The advantage of a small fall-off region is that the number
of SIP retransmissions will remain relatively constant when the SNR
decreases. Only in the fall-off region (i.e., at the edge of the network) will
the number of retransmissions increase sharply.

Although we only used five retry limits, Figure 4-13 suggests that the
width of the fall-off region does not significantly decrease beyond a retry
limit of 2. For 2, 4, 6, and 8 retries, the width of the fall-off regions is
around 2.2 dB, 1.7 dB, 2.1 dB, and 2.5 dB, respectively.

To see if a retry limit higher than 2 would be beneficial inside the fall-
off region, we calculated the average percentage of 200 OK transmissions
(i.e., the average of the values of F(t, r, s)) inside the fall-off regions for the
retry limits of 2, 4, 6, and 8. Figure 4-14 shows the result. The y-axis of
Figure 4-14 indicates the average of F(t, r, s) in the fall-off region, while the
x-axis specifies the number of 200 OK transmissions, t.

Figure 4-14 suggests that an increase in the retry limit to 4, 6, or 8 only
marginally improves the average percentage of transactions in the fall-off
region that manage to deliver their 200 OK in one shot (i.e., the average of
F(t, r, s) at t=1 does not significantly increase). Equivalently, increasing the
retry limit to 4, 6, or 8 does not significantly reduce the percentage of
transactions that requires one or more retransmissions to deliver a 200 OK
(i.e., the average of F(t, r, s) at a particular t ≥ 2 does not significantly
decrease). The reason is probably that the quality of the connection in the
fall-off region is so bad that the additional 802.11 retries are lost as well.

Based on this information, we draw the preliminary conclusion that a
retry limit of 2 suffices for SIP-based applications like the ALIVE protocol,
at least in an environment without interference and background traffic. This
may be advantageous for packets carrying the actual multimedia data
because a smaller retry limit can reduce the time these packets spend in the
MAC queue waiting for the (re)transmission of packets at the head of the
queue [Punnoose01].

 RESULTS 131

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

t

av
er

ag
e

F(
t,

r,
s)

 in
 fa

ll-
of

f r
eg

io
n

[%
]

retry = 2 retry = 4 retry = 6 retry = 8

Notice that the transaction run at 3.03 dB with a retry limit of 6 (Figure 4-
13d) experienced an unusual amount of packet loss, perhaps because of
interference of some sort.

As of around 3 dB, the percentage of failed transactions (i.e., E(r, s))
dramatically for all five retry limits. 90% of the transactions fail at around 2
dB (retry limits zero and two) or at around 1 dB (the other three retry
limits).

Back-off Delays
In experiment 3, the delay between the transmission of a transaction’s first
INVITE and the arrival of the first 200 OK is mainly determined by the
number of 200 OKs transmitted during the transaction. As a result, the
INVITE-200 OK delay should follow the delays of the back-off sequence
for retransmitting 200 OKs (i.e., 0.5 seconds for one retransmission, 1.5
seconds for two retransmissions, 3.5 seconds for three retransmissions, and
so on).

To check this, we plotted D(d, r, s), which is the percentage of
transactions with an INVITE-200 OK delay in the interval [d, d+0.25)
seconds in a transaction run with retry limit r and SNR s. D(d, r, s) should
be about the same as F(t, r, s) if d is the back-off delay for t transmissions.
For example, D(0.5, r, s) should be about the same as F(2, r, s) since the
second transmission (the first retransmission) of a 200 OK occurs 0.5
seconds after the transmission of the original 200 OK. Similarly, D(1.5, r,
s) should be about the same as F(3, r, s), D(3.5, r, s) about the same as F(4,
r, s), and so on.

Figure 4-15 plots D(d, r, s) for the retry limits 0 (Figure 4-15a) and 8
(Figure 4-15b), and shows that D(d, r, s) indeed largely follows the same

Figure 4-14. Average
number of 200 OK
transmissions in the fall-
off region for different
retry limits.

132 CHAPTER 4 ANALYSIS

curve as F(t, r, s) for the corresponding retry limits (see Figure 4-13a and
Figure 4-13e).

(a) (b)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

D(0,0,s) D(0.5,0,s) D(1.5,0,s) D(3.5,0,s) D(7.5,0,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

D(0,8,s) D(0.5,8,s) D(1.5,8,s) D(3.5,8,s) D(7.5,8,s)

4.5.4 Experiment 4: At the Edge of a Saturated 802.11 Network

The goal of experiment 4 is to analyze the retransmission behavior of SIP
transactions at the edge of an 802.11 cell that is fully loaded with
competing traffic. As in experiment 3, we measure the percentage of
retransmissions for various SNRs and retry limits as well as the associated
back-off delay. The 802.11 transmission rate in this experiment is 1 Mbps
and the network carries 1 Mbps of UDP Constant Bit Rate (CBR)
background traffic. The packet size of the background traffic is 1000 bytes.

Stability
Since the background traffic might increase packet loss on the network, we
first checked if 500 transactions per run still yielded stable results (cf. test
runs A and B of Section 4.5.1).

Figure 4-16 shows the results of the test run. Figure 4-16a shows the
average number of transmitted 200 OKs over m transactions, where m is a
multiple of 5 and 5 ≤ m ≤ 500. The average number of transmitted 200
OKs stabilizes at around 3.8, which is at approximately 300 transactions.
The error bars in Figure 4-16a indicate the standard deviation of the average
transmitted 200 OKs. The bars show that the standard deviation of the
transmitted 200 OKs ends up at around 2.7.

The average delay between an INVITE and a 200 OK and the average
delay between a 200 OK and an ACK (Figure 4-16b) also stabilize near 300
transactions. The same holds for their standard deviations (Figure 4-16c).
We therefore conclude that 500 SIP transactions is still a good value for the
length of a transaction run if the network is saturated.

Figure 4-15. Percentage
of SIP transactions that
incurs d seconds of
delay between an INVITE
and a 200 OK using
different SNR levels and
retry limits of 0 (a), and
8 (b).The transmission
rate is 1 Mbps and the
network is unloaded.

 RESULTS 133

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

transactions per experiment (multiples of 5)

av
er

ag
e

tra
ns

m
itt

ed
 2

00
 O

K
s

(c)

(a) (b)

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

transactions per experiment (multiples of 5)

av
er

ag
e

de
la

y
[s

ec
on

ds
]

INVITE-200 OK 200 OK-ACK

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

transactions per experiment (multiples of 5)

st
de

v
de

la
y

[s
ec

on
ds

]

INVITE-200 OK 200 OK-ACK

Fall-off Regions
Experiment 4 is based on 140 transaction runs, each consisting of 500
transactions. The transaction runs took place at 28 different SNR levels
between 0 and approximately 14 dB and using five different 802.11 retry
limits (0, 2, 4, 6, and 8). Figure 4-17 shows the relative number of 200 OK
transmissions of the transactions in the runs, again organized according to
retry limit (0 retry limit in Figure 4-17a, a retry limit of 8 in Figure 4-17e).

Figure 4-17 shows the same pattern as Figure 4-13, specifically that the
width of the fall-off region decreases as the 802.11 retry limit increases. In
addition, the width of the fall-off regions seem to be similar to those in the
unloaded network. The width of the fall-off region is about 3 dB for a retry
limit of 2 (Figure 4-17b, 2.2 dB in Figure 4-13b), 2 dB with a retry limit of 4
(Figure 4-17c, 1.7 dB in Figure 4-13c), 2.3 dB for a retry limit of 6 (Figure 4-
17d, 2.1 dB in Figure 4-13d), and 1.8 dB for a retry limit of 8 (Figure 4-17e,
2.5 dB in Figure 4-13e). This suggests that 802.11 MACs divide the link
bandwidth fairly amongst the mobile hosts in a cell. The only exception
seems to be the case where the 802.11 network does not retransmit frames,
in which case the width of the fall-off region is around 11 dB (Figure 4-17a,
4.6 dB in Figure 4-13a).

Notice that the width of the fall-off region in Figure 4-17a is an estimate
because F(1, 0, s) did reach 90% in experiment 4. Similarly, the width of

Figure 4-16. Stability
run for a saturated
network. Average and
standard deviation of the
number of transmitted
200 OKs (a), average
delay between an INVITE
and a 200 OK and
between a 200 OK and
an ACK (b) and the
associated standard
deviations (c).

134 CHAPTER 4 ANALYSIS

the fall-off region in Figure 4-17b is also an estimation because F(1, 2, s) did
not cross the 10% threshold.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,0,s) F(2,0,s) F(3,0,s)) F(4,0,s) F(5,0,s) E(0,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,2,s) F(2,2,s) F(3,2,s) F(4,2,s) F(5,2,s) E(2,s)

(a) (b)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,4,s) F(2,4,s) F(3,4,s) F(4,4,s) F(5,4,s) E(4,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,6,s) F(2,6,s) F(3,6,s) F(4,6,s) F(5,6,s) E(6,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,8,s) F(2,8,s) F(3,8,s) F(4,8,s) F(5,8,s) E(8,s)

(c) (d)

(e)

Figure 4-18 plots the average of F(t, r, s) inside the fall-off regions of Figure
4-17. It shows that the average percentage of transactions that require one
200 OK increases as the retry limit increases and that the difference
between a retry limit of 2 and a retry limit of 8 is around 22%. The
difference between the average percentage of transactions that transmit two
or more 200 OKs gets smaller when the retry limit increases. The
difference is at most 10% (at t = 2).

Figure 4-17.
Transmission behavior
of SIP transactions. The
curves indicate the
percentage of SIP
transactions that
required t 200 OK
transmissions (1 ≤ t ≤
5). The variables are the
SNR and the retry limit
(0, 2, 4, 6, and 8 in
graphs a, b, c, d, and e,
respectively). The
constants are the
transmission rate is (1
Mbps) and the
background load (1
Mbps CBR traffic).

 RESULTS 135

From Figure 4-18 we observe that a retry limit higher than 2 slightly
improves the percentage of transactions that deliver their 200 OK in one
shot, but that it does not significantly reduce the percentage of transactions
that require two or more 200 OK transmissions. A retry limit of 4 or
perhaps 6 therefore seems appropriate compared to the case where the
network is unloaded (see Section 4.5.3).

We note that the number of transaction runs executed inside the fall-off
region decreases as the retry limit increases. As a result, the average in Figure
4-18 are based on only a few transaction runs, in one case even on only one
(retry limit of 8).

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

t

av
er

ag
e

F(
t,r

,s
) i

n
fa

ll-
of

f r
eg

io
n

[%
]

retry = 2 retry = 4 retry = 6 retry = 8

Figure 4-19 shows D(d, r, s) (see Section 4.5.3) using the retry limits 0 and
8. Figure 4-19 shows that D(d, 0, s) and D(d, 8, s) largely follow the delays
associated with a 200 OK’s back-off sequence (Figure 4-19a and Figure 4-
19b).

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

D(0, 8, s) D(0.5, 8, s) D(1.5, 8, s) D(3.5, 8, s) D(7.5, 8, s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

D(0, 0, s) D(0.5, 0, s) D(1.5, 0, s) D(3.5, 0, s) D(7.5, 0, s)

(a) (b)

Figure 4-18. Average
percentage of
transactions with t 200
OK transmissions inside
the fall-off region.

Figure 4-19. Relative
frequency of INVITE-200
OK delays in a fully
loaded network.

136 CHAPTER 4 ANALYSIS

4.5.5 Experiment 5: Variably Loaded Network

The goal of experiment 5 is to determine the effects of background traffic
on the behavior of SIP transactions. We therefore configured the SNR to a
‘good’ value (around 32 dB on average) and ran 45 transaction runs using 9
different CBR background loads and 5 different retry limits.

Transmitted 200 OKs
For experiment 5, function F (see Section 4.5.3) has the form F(t, r, b),
where t is a number of 200 OK transmissions, r is a retry limit, and b is a
background load (kbps). The SNR does not appear in F because it is a
constant in experiment 5.

Figure 4-20 plots the retransmission behavior of the SIP transactions at 9
bandwidth levels (0…1024 kbps, multiples of 128 kbps) without any
802.11 retries. Figure 4-20 indicates that the percentage of transactions that
requires one or more retransmissions only increases at high background
loads (as of 640 kbps) and that the maximum is 12.4% (see F(2, 0, 896)).
This suggests that under ‘good’ radio conditions a CBR background load
has little effect on the number of 200 OK retransmissions, even if the retry
limit is 0. The number of transactions that retransmit a 200 OK is virtually
0 for a retry limit of 2, 4, 6, or 8 (not shown).

From Figure 4-20 we can conclude that CBR background traffic requires
few SIP transactions to retransmit a 200 OK if the SNR is ‘good’. A retry
limit of 2 suffices to reduce the number of 200 OK retransmissions to
virtually zero.

0

10

20

30

40

50

60

70

80

90

100

0 128 256 384 512 640 768 896 1024

CBR background load [kbps]

fre
qu

en
cy

 [%
]

F(1,0,b) F(2,0,b) F(3,0,b) F(4,0,b) F(5,0,b) E(0,b)

Figure 4-20.
Transmission behavior
of SIP transactions. The
curves indicate the
percentage of SIP
transactions that
required t 200 OK
transmissions (1 ≤ t ≤
5). The variables are the
amount of background
traffic. The constants are
the retry limit (0), the
transmission rate (1
Mbps) and the SNR
(around 32 dB on
average).

 RESULTS 137

4.5.6 Experiment 6: Unloaded Network, Different Rates

In experiment 6, we experimented with SIP transactions using the three
other 802.11 transmission rates (2, 5.5, and 11 Mbps). For each of these
transmission rates, we executed 120 transaction runs (500 transactions
each), divided over 24 SNR levels and 5 retry limits. In this experiment, the
network was unloaded.

Fall-off Regions
Figure 4-21 shows the fall-off regions at the three different transmission
rates (columns) and five retry limits (rows). We denote the percentage of
SIP transactions that transmitted a 200 OK t times as F(t, r, s, tx), where r
is a retry limit, s an SNR value, and tx a transmission rate. From left to
right, Figure 4-21 plots F(t, r, s, 2), F(t, r, s, 5.5), and F(t, r, s, 11). From
top to bottom, it plots F(t, 0, s, tx), F(t, 2, s, tx), F(t, 4, s, tx), F(t, 6, s, tx),
and F(t, 8, s, tx).

Figure 4-21 shows that the fall-off regions shift to the right as the
transmission rate increases (i.e., left to right). For example, with a retry
limit of 2 and a transmission rate of 2 Mbps, the fall-off region begins at
approximately 3.8 dB (Figure 4-21d). With the same retry limit and a
transmission rate of 5.5 dB (Figure 4-21e), the fall-off region begins at 5.6
dB, while at 11 Mbps it begins at around 9.8 dB (Figure 4-21f). These
measurements confirm that higher bitrate modulation schemes are more
sensitive to packet loss than lower rate ones [Hoene03, Agulayo04].

Figure 4-21 also shows that the width of the fall-off region decreases as
the retry limit increases (cf. Section 4.5.3 for a 1 Mbps transmission rate).
For example, at 11 Mbps (third column in Figure 4-21) the width of the
fall-off region is approximately 3.5 dB, 2.2 dB, 1.5 dB, 1.5 dB, and 1.4 dB
with a retry limit of 0, 2, 4, 6, and 8, respectively.

138 CHAPTER 4 ANALYSIS

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,0,s,11) F(2,0,s,11) F(3,0,s,11)
F(4,0,s,11) F(5,0,s,11) E(0,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,8,s,2) F(2,8,s,2) F(3,8,s,2)
F(4,8,s,2) F(5,8,s,2) E(8,s,2)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,6,s,11) F(2,6,s,11) F(3,6,s,11)
F(4,6,s,11) F(5,6,s,11) E(6,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,6,s,5.5) F(2,6,s,5.5) F(3,6,s,5.5)
F(4,6,s,5.5) F(5,6,s,5.5) E(6,s,5.5)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,4,s,5.5) F(2,4,s,5.5) F(3,4,s,5.5)
F(4,4,s,5.5) F(5,4,s,5.5) E(4,s,5.5)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,0,s,5.5) F(2,0,s,5.5) F(3,0,s,5.5)
F(4,0,s,5.5) F(5,0,s,5.5) E(0,s,5.5)

(g)

(j)

(m)

(c)

(f)

(i)

(l)

(o)

(b)

(e)

(h)

(k)

(n)

(d)

(a)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,2,s,5.5) F(2,2,s,5.5) F(3,2,s,5.5)
F(4,2,s,5.5) F(5,2,s,5.5) E(2,s,5.5)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,8,s,5.5) F(2,8,s,5.5) F(3,8,s,5.5)
F(4,8,s,5.5) F(5,8,s,5.5) E(8,s,5.5)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,2,s,11) F(2,2,s,11) F(3,2,s,11)
F(4,2,s,11) F(5,2,s,11) E(2,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,4,s,11) F(2,4,s,11) F(3,4,s,11)
F(4,4,s,11) F(5,4,s,11) E(4,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,8,s,11) F(2,8,s,11) F(3,8,s,11)
F(4,8,s,11) F(5,8,s,11) E(8,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,0,s,2) F(2,0,s,2) F(3,0,s,2)
F(4,0,s,2) F(5,0,s,2) E(0,s,2)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,2,s,2) F(2,2,s,2) F(3,2,s,2)
F(4,2,s,2) F(5,2,s,2) E(2,s,2)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,4,s,2) F(2,4,s,2) F(3,4,s,2)
F(4,4,s,2) F(5,4,s,2) E(4,s,2)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,6,s,2) F(2,6,s,2) F(3,6,s,2)
F(4,6,s,2) F(5,6,s,2) E(6,s,2)

Rate Adaptation
When a mobile hosts leaves a hotspot, it typically shifts down from 11
Mbps, to 5.5, to 2, and eventually to 1 Mbps. Conversely, the host will shift
back up to 11 Mbps when it enters a hotspot. This behavior is called rate
adaptation and should take place automatically [Haratcherev04]. Rate

Figure 4-21. F(t, r, s, tx)
at 2 Mbps (left column),
at 5.5 Mbps (middle
column), and at 11mbps
(right column). Each row
represents one retry
limit (0, 2, 4, 6, and 8).

 RESULTS 139

adaptation is not part of the 802.11b standard, which means that it can also
be controlled by applications, in this case the ALIVE system.

To avoid high delays, the mobile hosts in the ALIVE system should move
to a lower rate before they end up in the fall-off region of their current
transmission rate. For example, when a mobile host is using a retry limit of
two and its current transmission rate is 11 Mbps, then it should shift to 5.5
Mbps before the SNR drops below 12 dB (see Figure 4-21f).

To identify at which moments a SIP-based application should shift to
another rate, we plotted the fall-off regions of the four 802.11b rates in
Figure 4-22. Each of the five graphs in Figure 4-22 represent one specific
retry limit (0, 2, 4, 6, or 8). Observe that Figure 4-22 only plots F(1, r, s,
tx) to keep it readable.

From Figure 4-22, we observe that the fall of regions of different
transmission rates begin to overlap when the retry limit decreases. For
example, at a retry limit of 8, the four fall-off regions are almost non-
overlapping (Figure 4-22e), while there is a considerable overlap if the retry
limit is 0 (Figure 4-22a). To avoid ending up in a fall-off region, this means
that a mobile host will need to change its rate more often across the same
dB range at lower retry limits than at higher ones.

Figure 4-22 thus provides a metric for the edge of an 802.11 cell, which
depends on the SNR, the retry limit, and the transmission rate. This
information can be used by switching controllers on mobile hosts to initiate
configuration discovery.

140 CHAPTER 4 ANALYSIS

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,6,s,1) (1,6,s,2) (1,6,s,5.5) (1,6,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,4,s,1) F(1,4,s,2) F(1,4,s,5.5) F(1,4,s,11)

(a)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,0,s,1) F(1,0,s,2) F(1,0,s,5.5) F(1,0,s,11)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,2,s,1) F(1,2,s,2) F(1,2,s,5.5) F(1,2,s,11)

(b)

(c) (d)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

F(1,8,s,1) F(1,8,s,2) F(1,8,s,5.5) F(1,8,s,11)

(e)

Fall-off Regions
Figure 4-23 shows the average value of F in the fall-off region for 2 Mbps
(Figure 4-23a), 5.5 Mbps (Figure 4-23b), and 11 Mbps (Figure 4-23c).
Similar to the 1 Mbps case (Figure 4-14), Figure 4-23 suggests that a retry
limit of more than 2 does not significantly reduce the percentage of
transactions that requires one or more retransmissions to deliver a 200 OK
in the fall-off region. Note however that the number of transaction runs
that take place in the fall-off region decreases as the width of the fall-off
region decreases. As a result, some of the averages in Figure 4-23 are based
on two or sometimes even one transaction run.

Figure 4-22. Fall-off
regions at different
transmission rates (1, 2,
5.5, and 11 Mbps) with
retry limits of 0 (a), 2
(b), 4 (c), 6 (d), and 8
(e).

 RESULTS 141

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

t

av
er

ag
e

F(
t,r

,s
,1

1)
 in

 fa
ll-

of
f r

eg
io

n
[%

]

retry = 2 retry = 4 retry = 6 retry = 8

(a) (b)

(c)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

t

av
er

ag
e

F(
t,r

,s
,5

.5
) i

n
fa

ll-
of

f r
eg

io
n

[%
]

retry = 2 retry = 4 retry = 6 retry = 8

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

t

av
er

ag
e

F(
t,r

,s
,2

) i
n

fa
ll-

of
f r

eg
io

n
[%

]

retry = 2 retry = 4 retry = 6 retry = 8

4.5.7 ALIVE Protocol Overhead Revisited

Using the data of experiment 3 (unloaded network, Section 4.5.3) and
experiment 4 (saturated network, Section 4.5.4), we can now also provide
worst-case values for the delay formulas of Section 4.2.3 (ALIVE protocol
overhead). In this chapter, we use the average delay between an INVITE
and a 200 OK for this purpose. We consider the average value in the middle
of the fall-off region to be the worst one.

Unloaded Network (Experiment 3)
Figure 4-24 shows the average delays between an INVITE and a 200 OK in
experiment 3 using a retry limit of 2. Figure 4-24a shows the average delay
over all SIP transactions in a run whereas Figure 4-24b shows the average
delay for the transactions in a run that do not involve any SIP
retransmissions (i.e., their delays are close to the round-trip delay to
traverse the wireless link). The dashed rectangles in Figure 4-24 represent
the fall-off region of Figure 4-13b. The vertical dashed line indicates the
middle of the fall-off region.

The worst-case average delay over all SIP transactions (Figure 4-24a) is
approximately 324 milliseconds (at around 3.3 dB). Since we used an
asymmetrical measurement set-up in which the client always transmits at

Figure 4-23. Average of
F(t, r, s, tx) in the fall-off
region for 2 Mbps (a),
5.5 Mbps (b), and 11
Mbps (c).

142 CHAPTER 4 ANALYSIS

full power (see Section 4.4), it is typically the path from the SIP server to
the SIP client that is subject to SIP retransmissions. The one-way delay on
this path is 324 milliseconds minus the one-way delay from the SIP client
to the SIP server. The latter is equal to half the INVITE-200 OK delay of a
SIP transaction that does not involve any SIP retransmissions (assuming
symmetrical up and downlinks). Figure 4-24b shows that the worst-case
average delay for such transactions is around 50 milliseconds (at around 3.3
dB), which means that the worst-case one-way delay from the SIP server to
the SIP client is 324 – (50/2) = 299 milliseconds. In the formulas of
Section 4.2.2, the one-way delay from a front-end and a mobile host (i.e.,
d(accessPoint, host) + drtx(frontEnd, sip)) and the one-way delay from the
target media server to the mobile host (i.e., d(accessPoint, host) +
drtx(targetMediaServer, sip)) therefore both equal 299 milliseconds when
the 802.11 network is unloaded. For simplicity, we assume that the one-
way delays in the other direction (host to front-end and host to target
media server) are the same.

Substituting the 299 milliseconds in the formulas of Section 4.2.2, we
get a worst-case value for the configuration query delay (tquery) of:

tquery = 4*299 + 1216 = 2412 milliseconds

The worst-case switching delay (tswitch) in this case equals

2*299 + 20 = 618 milliseconds

The resulting total delay of the ALIVE protocol then equals

tquery + tswitch = 3030 milliseconds

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

av
er

ag
e

IN
V

IT
E

-2
00

 O
K

 d
el

ay
 [s

ec
on

ds
]

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

av
er

ag
e

IN
V

IT
E

-2
00

 O
K

 d
el

ay
 [s

ec
on

ds
]

(a) (b)

Loaded Network (Experiment 4)
Figure 4-25 shows the average delays between an INVITE and a 200 OK in
experiment 4 (network saturated with 1 Mbps of CBR background traffic)

Figure 4-24. Average
INVITE-200 OK delay in
an unloaded network
using a retry limit of 2.
Graph (a) shows the
average delays for all
SIP transactions,
whereas (b) shows the
average delays for
transactions without any
SIP retransmissions.

 RESULTS 143

using a retry limit of 4. Again, Figure 4-25a shows the average over all SIP
transactions in a run whereas Figure 4-25b shows the average delay for the
transactions without SIP retransmissions. The dashed rectangles represent
the fall-off region of Figure 4-17c and the vertical dashed line the middle of
the fall-off region.

The worst-case average delay over all SIP transactions (Figure 4-25a) is
approximately 2500 milliseconds (at around 2.4 dB). Using the same
rationale as for the unloaded network (asymmetrical set-up), the one-way
delay from the SIP server to the SIP client equals 2500 milliseconds minus
the one-way delay from the SIP client to the SIP server. Since 1 Mbps of
CBR background traffic does not cause any SIP retransmissions using a
802.11 retry limit of 4 and a ‘good’ SNR value (see experiment 5, Section
4.5.5), there will be no SIP retransmissions as a result of packet loss on the
path from the SIP client to the SIP server. The one-way delay from the SIP
client to the SIP server is therefore half the INVITE-200 OK delay of a SIP
transaction that does not involve any SIP retransmissions (assuming
symmetrical up and downlinks). Figure 4-25b shows that the worst-case
average delay for such transactions is around 240 milliseconds (at around
2.4 dB), which means that the one-way delay from the SIP server to the SIP
client is 2500 – (240/2) = 2380 milliseconds. In the formulas of Section
4.2.2, d(accessPoint, host) + drtx(frontEnd, sip) and d(accessPoint, host)
+ drtx(targetMediaServer, sip) therefore both equal 2380 milliseconds. For
simplicity, we again assume that the one-way delays in the other direction
are the same.

Substituting the 2380 milliseconds in the formulas of Section 4.2.2, we
get a worst-case value for the configuration query delay (tquery) of:

tquery = 4*2380 + 1216 = 10736 milliseconds

The worst-case switching delay (tswitch) equals:

tswitch = 2*2380 + 20 = 4780 milliseconds

The total worst-case delay of the ALIVE protocol (tquery + tswitch) equals:

tquery + tswitch = 15516 milliseconds

144 CHAPTER 4 ANALYSIS

0

0,025

0,05

0,075

0,1

0,125

0,15

0,175

0,2

0,225

0,25

0,275

0,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

av
er

ag
e

IN
V

IT
E

-2
00

 O
K

 d
el

ay
 [s

ec
on

ds
]

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

av
er

ag
e

IN
V

IT
E

-2
00

 O
K

 d
el

ay
 [s

ec
on

ds
]

(a) (b)

From the above analysis we conclude that the playout buffer on a mobile
host in the ALIVE system should be able to buffer about 15.5 seconds of
multimedia information to deal with switches that takes place under the
worst circumstances. Buffers of such a size are in line with the amount of
buffering used by a contemporary media player such as RealPlayer [Li02].
However, such amounts of buffer space are usually only required in a small
small dB region at the very edge of a cell, a point at which it will probably
also be difficult to execute an IP handoff. Outside this small region, the
ALIVE protocol will typically introduce a delay that is close to its minum
value. This is around 56 milliseconds for an unloaded network (see Section
4.2.3) and about 108 milliseconds for a network loaded with 1 Mbps of
CBR background traffic (the minimum average one-way delay in a loaded
network is around 25 milliseconds, see Figure 4-25b).

4.6 Related Work

As far as we know, a thorough empirical investigation into the relation
between SIP retransmissions and 802.11 packet loss parameters has not
been reported before. Camarillo, Kantola, and Schulzrinne share this
observation by pointing out that “more work is needed to study interactions
between lossy links such as some radio interfaces and transport-layer or
application-layer retransmissions” [Camarillo03].

Simulation and analytical approaches do however exist. Curcio et al.
[Curcio01] used a SIP emulator to measure the delay introduced by SIP
transaction over lossy wireless LAN links. They focused on telephony
applications and measured the delay between an INVITE and a 180 Ringing
(the post dialing delay). They vary radio coverage levels (percentages) and
the packet loss rate. The exact meaning of a radio coverage level is however
unclear plus that they do not consider the 802.11 parameters that influence
their packet loss rate. Banerjee et al. [Banerjee04] take an analytical
approach and use queuing models to analyze the one-way delay to transmit
an INVITE from a mobile host to a correspondent host over an 802.11

Figure 4-25. Average
INVITE-200 OK delay in
a network loaded with
CBR traffic using a retry
limit of 4. Graph (a)
shows the average
delays for all SIP
transactions, whereas
(b) shows the average
delays for transactions
without any SIP
retransmissions.

 RELATED WORK 145

link. They vary the frame error rate and the transmission rate of an 802.11
link as well as the rate at which a mobile host transmits INVITEs.

The delay introduced by SIP transactions has also been analyzed for
UMTS networks [Banerjee03, Banerjee04, Curcio02] (analytically and
through simulations), for UMTS satellite links [Kueh04] (simulations), and
for the fixed portion of the Internet [Eyers00] (simulations).

The influence of 802.11 packet loss parameters has been empirically
studied in other application areas, specifically in the context of multi-hop
ad-hoc networks [Aguayo04] and the actual streaming of multimedia
packets [Hoene03]. Their experiments are similar to ours and our results
seem to be in line with theirs.

Chapter 5

5. Conclusions

We started this thesis with some observations on the complexity in the value chain
from multimedia content providers (‘sources’) to mobile Internet users. The first
challenge was to deliver live and scheduled multimedia content to a large number of
heterogeneous receivers. We tackled this challenge in the design of the ALIVE business
network, specifically by means of the introduction of aggregators, which form a second
tier between users and sources. Aggregators deal with heterogeneous receivers by
transmitting channels in multiple configurations. A configuration consists of a set of
streams with specific packetization and compression parameters that carry the content
of a channel. The second challenge was to enable mobile users to seamlessly receive a
channel while they roam across aggregators and access networks. We addressed this
challenge in the ALIVE business network in the form of roaming agreements between
aggregators, as well as in the design of the ALIVE system, in which appropriate
configurations are negotiated between aggregators and users. We also addressed the
challenge of seamless mobility in our analysis, where we investigated under which
802.11 conditions the implementation of the ALIVE protocol on top of SIP yields
acceptable delays.

In this chapter, we consider the results of our work on the ALIVE business network
and the design and analysis of the ALIVE system in more detail (Section 5.1). We
also make the contributions of this thesis explicit (Section 5.2). We conclude with an
overview of future work (Section 5.3).

5.1 Results

ALIVE Business Network
In the ALIVE business network, sources deliver multimedia channels to
heterogeneous receivers (e.g., in terms of the capabilities of mobile hosts or
the type of network these hosts connect to) through an infrastructure of
aggregators. Sources can off-load certain tasks to aggregators, which

148 CHAPTER 5 CONCLUSIONS

increases the sources’ scalability and reduces their costs (notably
connectivity costs and subscription management).

The ALIVE business network furthermore enables sources to distribute
a multimedia channel through multiple aggregators. Some of these
aggregators may be bound to specific networks, which allows sources to
serve specific regions of the Internet. The distribution of a channel through
multiple aggregators also provides flexibility to end-users because they can
receive a certain channel from an aggregator of their choice.

The ALIVE business network is a two-tiered network in that it consists
of an application-level part (with sources and aggregators) and a network-
level part (with providers of Internet access). While this makes the business
network more complex, it also provides flexibility advantages because users
can independently select aggregators and access providers. The two-tiered
approach is furthermore in line with current trends in content distribution.

The aggregators in the ALIVE business network can deliver content
channels (e.g., CNN TV) in various configurations. Aggregators typically
support a relatively small number of configurations, thus striking a balance
between per-user personalization of a channel (e.g., delivering the channel
in a configuration that is tailored to the characteristics of a specific user’s
mobile host) and no personalization at all (i.e., everybody receiving a
channel in the same configuration). This approach improves the scalability
of aggregators, but might result in users receiving a channel in a suboptimal
configuration (e.g., because their network connections provide some extra
bandwidth, but not enough to receive the channel in the next higher
configuration). A course-grained sampling of the spectrum in which an
aggregator can deliver a channel is furthermore in line with current Internet
practices in which users can typically receive a multimedia channel at a few
bitrates.

To support roaming users, aggregators establish application-level
roaming agreements amongst each other. These agreements enable users to
receive channels from multiple aggregators (e.g., at different locations)
while having a subscription with only a few of them (typically one).
Application-level roaming agreements define in which configurations a user
can receive channels from a foreign aggregator and can be considered the
application-level counter parts of traditional network-level roaming
agreements.

ALIVE System
The ALIVE system enables mobile users to roam in an unrestricted manner
while continuously receiving a channel. The system transparently switches
mobile hosts from one aggregator to another and executes handoffs on the
mobile host’s network interfaces. The system switches a mobile host to the
aggregator that provides a certain channel in the best configuration, where

 RESULTS 149

best is defined by the end-user. This makes the ALIVE system a user-
oriented system.

The ALIVE system is scalable because most of its logic resides on mobile
hosts. The system’s operation is policy-controlled, which enables the
stakeholders to flexibly change the rules that the ALIVE system uses to
make decisions (e.g., when to look for another available configuration of a
channel).

The ALIVE system contains an application-level protocol, which we
implemented using the Session Initiation Protocol (SIP) and the Session
Description Protocol (SDP), both of which are Internet standards. We
deployed our implementation in a testbed with different types of networks,
which represents the ‘beyond 3G’ Internet environment in which the
ALIVE protocol is supposed to operate.

Analysis of the ALIVE System
The analysis of our implementation of the ALIVE protocol (i.e., its
implementation based on SIP) provides quantitative information on smooth
switching, which enables users to seamlessly receive a channel while they
roam. Our analysis concentrates on the delay introduced by the ALIVE
protocol in a contemporary wireless Internet environment, specifically
consisting of 802.11 hotspots and UMTS/GPRS overlays. We focus on the
operation of the ALIVE protocol right after a handoff to another 802.11
access provider, which is where the ALIVE protocol typically comes into
play. After a handoff, the ALIVE system usually first attempts to discover
the configurations in which the user can receive a channel from the local
aggregators on the new network. At the edges of 802.11 cells, this may
result is a significant delay because of packet loss on the link and the
exponential back-off mechanism that SIP uses to recover from such losses.

Our analysis consists of two parts: (1) a heuristic analysis of the
application and network-level delay components involved in a typical switch
and an estimation of their best-case values, and (2) an empirical analysis of
the delay introduced by SIP transactions under various 802.11 network
conditions. In this last part, we used an 802.11b network and varied the
SNR, the maximum number of 802.11 retransmissions (the retry limit),
and the amount of competing traffic (constant bitrate).

In an unloaded network, our experiments show that SIP transactions
usually introduce little delay at the edge of an 802.11 cell if the retry limit is
at least two. The only exception is a small region (about 2-3 dB wide) at the
far end of the cell where the number of SIP transactions that require one or
more retransmissions increases rapidly. Our experiments furthermore
suggest that a retry limit of more than two does not significantly reduce the
delay introduced by SIP transactions in the 2-3 dB region. For a network
fully loaded with constant bitrate traffic, the effective retry limits are 4 or 6.

150 CHAPTER 5 CONCLUSIONS

This type of information is also relevant for operators of 802.11 networks
because a larger number of 802.11 retransmissions might affect the queuing
delays of multimedia packets in the 802.11 MAC.

Our experiments also show that the influence of background traffic
alone does not negatively affect the SIP delay with a retry limit of at least
two. Finally, we have also experimented with the retransmission behavior of
SIP transactions at different transmission rates, which enables us to
estimate the edge of the network given a certain transmission rate and SNR.
This may be useful information for a rate adaptation scheme that tries to
avoid that a SIP-based application needs to run at the very edge of a
network.

5.2 Contributions

The contributions of this thesis are:
– A well-defined business network for the distributing live multimedia

content in a wireless Internet using multiple intermediaries
(aggregators). A business network like this is lacking in systems with
objectives similar to the ALIVE system;

– The design, implementation, and validation of a mobile-controlled
system that enables mobile hosts to switch to the aggregator that
provides a channel in the best way and an implementation of it based on
standard Internet protocols. Similar systems only consider switches
between proxy servers of the same administrative authority (‘intra-
aggregator switches’) or put most of the system’s responsibility in the IP
infrastructure;

– An empirical analysis of the delay introduced by SIP transactions over
802.11 links under various network conditions. Until now, this has only
been done though simulations; and

– Hints on how to dimension an 802.11 network under varying load
conditions and radio qualities.

5.3 Future Work

In this section, we briefly consider future work with respect to the ALIVE
business network, the system, and our analysis.

ALIVE Business Network
The ALIVE business network can be detailed and extended in several ways.
One possibility to extend the network is to use a hierarchy of aggregators
(cf. [Chawathe02]) instead of just one layer of aggregators. Other

 FUTURE WORK 151

possibilities are to consider the impact accounting on the business network
(e.g., in application-level roaming agreements) and to study the languages
that can be used to describe the agreements in the network (e.g., a right
expression language that sources can use to specify in which ways
aggregators are allowed to manipulate a channel). Yet another option is to
consider the use of a ‘universal list of configurations’ from which
aggregators would pick standardized configurations.

ALIVE System
Future work for the ALIVE system is to detail switches between different
types of media servers (e.g., between a SIP server and an RTSP server) and
what this would mean for the involved signaling protocols. Another topic
could be session mobility, in which users transfer an ongoing multimedia
session from one device to another (e.g., from their smart phone to a flat
panel television). A further possibility is to investigate the use of media
servers that can begin to stream a channel at a specified point in time. This
would assist mobile hosts in executing smooth switches, but also requires
aggregators to use a delay buffers in case an inbound mobile host wants to
begin receiving a channel some time ‘in the past’. This topic would also
require the ALIVE system to be able to discover if media servers support
this capability. Two final topics are the implementation of the configuration
notification service (e.g., using SIP eventing [Roach02]) and the design of
the ALIVE system based on a completely different principle (e.g., thin
client).

ALIVE Analysis
The analysis of the ALIVE protocol could be extended in several
dimensions. One possibility is to consider the performance of the system
using different configuration discovery policies (e.g., proactive versus
reactive) and under different circumstances (e.g., velocity and battery
drain). Another possibility is to conduct additional experiments, for
instance in a less controlled environment, using variable bitrate background
traffic, using multiple hosts at different transmission rates, another interval
between consecutive SIP transactions, and so on.

Chapter 1

6. Samenvatting

In dit proefschrift behandelen we het efficiënt distribueren van live en
aangekondigde multimedia stromen (bijvoorbeeld radio- en televisie-
uitzendingen) naar mobiele gebruikers via een grenzeloze Internet
omgeving. Het doel van dit proefschrift is het ontwerpen en ontwikkelen
van een content delivery systeem dat (1) eigenaars van live multimedia
informatie in staat stelt hun informatie af te leveren bij een groot aantal
heterogene ontvangers en (2) ontvangers in staat stelt bepaalde informatie
continu te blijven ontvangen, onafhankelijk van hun locatie of het netwerk
dat ze gebruiken.

Eerdere studies op het gebied van het efficiënt distribueren van
multimedia stromen via het Internet laten zien dat het mogelijk is deze
stromen te verspreiden via een overlay netwerk dat bestaat uit meerdere
gedistribueerde proxy servers. In dit proefschrift breiden we dit concept uit
naar het verspreiden van live en aangekondigde multimedia informatie via
meerdere aggregators. Een aggregator is een intermediair die multimedia
informatie verzamelt van verschillende zenders en deze informatie
vervolgens aanbiedt aan mobiele gebruikers. Een aggregator maakt daarbij
gebruik van een verzameling media servers.

Doordat dezelfde informatie via meerder aggregators beschikbaar is
kunnen mobiele gebruikers van de ene naar de andere aggregator schakelen.
Hierdoor ontvangen mobiele gebruikers dezelfde informatie afwisselend van
verschillende aggregators.

Het dekkingsgebied van een aggregator kan beperkt zijn tot een bepaald
aantal netwerken, wat betekent dat het omschakelen naar een dergelijke
aggregator vereist dat de mobiele gebruiker ook overgaat naar een netwerk
dat onderdeel is van het dekkingsgebied van de aggregator.

Het systeem dat de apparatuur van mobiele gebruikers omschakelt naar
een andere aggregator is het ALIVE systeem, wat staat voor Aggregator
Switching System for Mobile Receivers of Live Multimedia Content. We
richten ons vooral op de ‘front-end’ van het ALIVE systeem, wat bestaat uit

154 SAMENVATTING

mobiele gebruikers van mobiele apparaten, aggregators en draadloze
netwerken. In het bijzonder richten we ons op de signaleringsinteracties
tussen mobiele apparaten en aggregators. De details van multimedia
informatie zelf zijn geen onderdeel van ons werk.

Het ontwerp van het ALIVE systeem is gebaseerd op het ALIVE business
netwerk. Dit is een netwerk van business rollen, dat bijvoorbeeld bestaat uit
rollen zoals ‘aggregator’ en ‘eindgebruiker’. Het netwerk beschrijft de
relaties die kunnen bestaan tussen de domeinen die betrokken zijn bij het
verspreiden en ontvangen van live multimedia informatie via meerdere
aggregators. Het ALIVE business netwerk bestaat uit een applicatie-level
deel (een overlay die bestaat uit zenders en aggregators van multimedia
informatie) en een netwerk-level deel (bestaand uit aanbieders van basis
Internet toegang). Deze opdeling komt overeen met huidige trends op het
gebied van content distributie. We definiëren de eigenschappen van de
relaties in het ALIVE business netwerk in de vorm van overeenkomsten.

Het ALIVE business netwerk gebruikt de notie van een van een kanaal
voor een bepaald stuk multimedia informatie (bijvoorbeeld een live
uitzending van het NOS journaal). De aggregators in het ALIVE business
netwerk kunnen een kanaal in verschillende configuraties aanbieden om zo
het aantal ontvangers van het kanaal verder te vergroten. Een configuratie
levert een kanaal op een bepaald perceptueel kwaliteitsniveau en vereist een
goed gedefinieerde hoeveelheid resources (bijvoorbeeld
netwerkbandbreedte). Aggregators kunnen er voor kiezen een relatief klein
aantal configuraties te ondersteunen om zo een balans te creëren tussen
personalisatie voor individuele gebruikers (bijvoorbeeld door middel van
configuraties die zijn afgestemd op de huidige bandbreedte beschikbaar
voor een specifiek mobiel apparaat) en helemaal geen personalisatie
(iedereen ontvangt een kanaal in één en dezelfde configuratie).

Aggregators zetten onderling zogenaamde applicatie-level roaming
overeenkomsten op om mobiele gebruikers te ondersteunen. Deze
overeenkomsten stellen gebruikers in staat kanalen te ontvangen van
meerdere aggregators (bijvoorbeeld op verschillende locaties) terwijl ze een
abonnement hebben met slechts enkele aggregators (typisch één).
Applicatie-level roaming overeenkomsten definiëren in welk configuraties
gebruikers een kanaal kunnen ontvangen van aggregators waarbij ze geen
abonnement hebben (foreign aggregators).

Een aggregator kan gebonden zijn aan een bepaalde verzameling
netwerken door middel van binding-overeenkomsten met leveranciers van
Internet toegang. In het ALIVE business netwerk heet een aggregator die
betrokken is in een binding-overeenkomst een locale aggregator. De reden
hiervoor is dat de binding-overeenkomst de beschikbaarheid van de
aggregator beperkt tot de netwerken van de betrokken Internet leverancier.
Een leverancier van Internet toegang kan locale aggregators gebruiken om

 SAMENVATTING 155

exclusieve kanalen of configuraties van kanalen aan te bieden aan gebruikers
die via de één van zijn netwerken een verbinding met het Internet maken
(vergelijk de walled-garden modellen die cellulaire operators tegenwoordig
typisch hanteren).

Het ALIVE systeem stelt mobiele gebruikers in staat om zich op een
onbeperkte manier te verplaatsen terwijl zijn een kanaal ontvangen. Het
systeem schakelt mobiele apparaten automatisch van de ene aggregator naar
de andere en verbindt ze met een netwerk waarin de nieuwe aggregator
beschikbaar is. Dit alles vindt grotendeels transparant voor de eindgebruiker
plaats. Het systeem schakelt een mobiel apparaat naar een aggregator die
een bepaald kanaal in de beste configuratie aanbiedt, waarbij ‘de beste’
wordt bepaald door de voorkeuren van de gebruiker. Dit maakt het ALIVE
systeem een gebruikersgeorienteerd systeem.

Het ALIVE systeem is schaalbaar omdat de meeste intelligentie op
mobiele apparaten zit (mobiel-gecontrolleerd schakelen). De werking van
het systeem is daarnaast gebaseerd op policies. Dit stelt de stakeholders in
het ALIVE business netwerk in staat om op een flexibele manier de regels te
veranderen die het ALIVE systeem gebruikt om schakelbeslissingen te
maken (bijvoorbeeld wanneer het systeem op zoek gaat naar een
alternatieve configuratie voor een bepaald kanaal).

Het ALIVE systeem bevat een applicatieprotocol dat we hebben
gerealiseerd met behulp van het Session Initiation Protocol (SIP) en het
Session Description Protocol (SDP). Beide protocollen zijn Internet
standaarden. We hebben onze implementatie ingezet in een kleinschalige
testomgeving met meerdere typen netwerken. Deze netwerken
representeren de ‘beyond 3G’ Internetomgeving waarin het ALIVE systeem
zou moeten draaien.

Middels een analyse van onze SIP implementatie van het ALIVE protocol
hebben we kwantitatieve informatie verkregen over hoe schakelingen tussen
aggregators soepel kunnen worden uitgevoerd. Onze analyse richt zich op
de extra vertraging die het ALIVE protocol introduceert in een hedendaagse
draadloze Internetomgeving, in het bijzonder een omgeving die bestaat uit
802.11 hotspots en UMTS/GPRS overlays. We richten ons verder op de
werking van het ALIVE protocol meteen na een wisseling naar een andere
802.11 aanbieder omdat dit typisch het moment is waar het ALIVE
protocol in werking treedt. Na een wisseling van netwerkaanbieder probeert
het ALIVE systeem namelijk typisch eerst te ontdekken in welke
configuraties de gebruiker een kanaal kan ontvangen van de locale
aggregators op het nieuwe netwerk. Aan de randen van 802.11 cellen kan
dit leiden tot significante vertragingen vanwege het exponentiële back-off
mechanisme dat SIP gebruikt om te herstellen van pakketverlies.

Onze analyse bestaat uit twee delen: (1) een heuristische analyse van de
applicatie- en netwerk-level vertragingscomponenten van een typische

156 SAMENVATTING

aggregatoromschakeling en een schatting van hun waarden, en (2) een
empirische analyse van de vertraging die SIP transacties introduceren onder
verschillende 802.11 netwerkcondities.

Op basis van onze implementatie en onze metingen concluderen we dat
het ALIVE systeem een realiseerbaar systeem is dat een duidelijke bijdrage
levert een de visie van ‘multimedia-anywhere’.

Chapter 1

7. References

[3GPP99] 3GPP, “Automatic Establishment of Roaming Relationships”, Technical Report
22.971, version 3.1.1, April 1999

[Abilene04] Abilene one-way delay statistics,
http://abilene.internet2.edu/ami/owamp_status.cgi/

[Aguayo04] D. Aguayo, J. Bicket, S. Biswas, G. Judd, R. Morris, “Link-level Measurements
from an 802.11b Mesh Network”, SIGCOMM’04, Portland, USA, Aug-Sept 2004

[Amir95] E. Amir, S. McCanne, and H. Zhang, “An Application Level Video Gateway”, Proc.
of ACM Multimedia, San Fransisco, USA, Nov. 1995

[Amir98] E. Amir, S. McCanne, R. Katz, “An Active Service Framework and its Application
to Real-time Multimedia Transcoding”, ACM SIGCOMM’98, Vancouver, Canada,
Sept. 1998

[Balachandran97] A. Balachandran, A. Campbell, M. Kounavis, “Active Filters: Delivering Scaled
Media to Mobile Devices”, 7th Int. Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV'97), St. Louis, USA, May 1997

[Banerjee03] N. Banerjee, S. K. Das, “Hand-off Delay Analysis in SIP-based Mobility
Management in Wireless Networks”, Proceedings of IEEE International Workshop
on Wireless, Mobile Ad hoc Networks (WMAN'03), Nice, France, Apr 2003

[Banerjee04] N. Banerjee, W. Wu, K. Basu, S. K. Das, “Analysis of SIP-Based Mobility
Management in 4G Wireless Networks”, Computer Communications, Vol 27, No.
8, pp 697-707, 2004

[Brewer98] E. Brewer, R. Katz, Y. Chawathe, S. Gribble, T. Hodes, G. Nguyen, M. Stemm, T.
Henderson, E. Amir, H. Balakrishnan, A. Fox, V. Padmanabhan, S. Seshan, “A
Network Architecture for Heterogeneous Mobile Computing”, IEEE Personal
Communications, Oct. 1998

[Cain03] B. Cain, A. Barbir, R. Nair, O. Spatscheck, “Known CN Request-Routing
Mechanisms”, Internet Draft, draft-ietf-cdi-known-request-routing-03.txt, April
2003

[Calhoun03] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, “Diameter Base
Protocol”, Internet Draft, April 2003, draft-ietf-aaa-diameter-17.txt

[Camarillo03] G. Camarillo, R. Kantola, H. Schulzrinne, “Evaluation of Transport Protocols for
the Session Initiation Protocol”, IEEE Network, Sept./Oct. 2003, pp. 40-46

158 REFERENCESREFERENCES

[Campbell00] A. Campbell, J. Gomez, S. Kim, A. Valkó, C. Wan, Z. Turányi, “Design,
Implementation, and Evualation of Cellular IP”, IEEE Personal Communications,
August 2000

[Chawathe02] Y. Chawathe, “Scattercast: An Adaptable Broadcast Distribution Framework”,
Special Issue of ACM Multimedia Distribution, 2002

[Chennikara02] J. Chennikara, W. Chen, A. Dutta, O. Altintas, “Application-Layer Multicast for
Mobile Users in Diverse Networks”, Proceedings IEEE Globecom 2002, Taipei,
Taiwan, November 2002

[Cheung96] S. Cheung, M. Ammar, X. Li, “On the use of destination set grouping to improve
fairness in multicast video distribution”, proceedings IEEE Infocom '96, San
Francisco, USA, March 1996, pp. 553-560

[Clark88] D. Clark, “The Design Philosophy of the DARPA Internet Protocols”, ACM
SIGCOMM, Sept. 1988

[Cox99] M. Cox, R. Davidson, “Concepts, Activities and Issues of Policy-based
Communications Management”, BT Technology Journal, Vol. 17, Issue 3, July
1999, pp. 155-169

[Curcio 01] I. Curcio, M. Lundan, “Study of Call Setup in SIP-Based Videotelephony”, 5th
World Multi-Conference on Systemics, Cybernetics, and Informatics (SCI 2001),
Orlando, Florida, USA, July 2001

[Curcio 02] I. Curcio, M. Lundan, “SIP Call Setup Delay in 3G Networks”, 7th International
Symposium on Computers and Communications (ISCC’02), Taormina-Giardini
Naxos, Italy, July 2002

[Day01] M. Day, B. Cain, G. Tomlinson, P. Rzewski, “A Model for Content Interworking
(CDI)”, Internet Draft, draft-day-cdnp-model-07.txt, Oct. 2001

[DeCleyn04] P. De Cleyn, N. Van den Wijngaert, L. Cerdá, C. Blondia, “A smooth handoff
scheme using IEEE802.11 triggers – design and implementation”, International
Journal of Computer and Telecommunications Networking, Computer Networks
and ISDN (Elsevier), Volume 45, Issue 3, pp 345-361, June 2004

[DOLMEN98] DOLMEN Consortium, “Open Service Architecture for Mobile and fixed
environments (OSAM)”, Final Release, Version 4.0, July 1998

[Donovan02] S. Donovan, J. Rosenberg, “Session Timers in the Session Initiation Protocol
(SIP)”, Internet Draft, Nov. 2002, draft-ietf-sip-session-timer-10.txt

[Doufexi03] A. Doufexi, E. Tameh, A. Nix, S. Armour, A. Molina, “Hotspot Wireless LANs to
Enhance the Performance of 3G and Beyond Cellular Networks”, IEEE
Communications Magazine, July 2003, pp. 58-65

[Drew01] N. Drew, M. Dillinger, “Evolution Toward Reconfigurable User Equipment”, IEEE
Communications Magazine, Feb. 2001

[Droms99] R. Droms, “Automated Configuration of TCP/IP with DHCP”, IEEE Internet
Computing, July-August 1999

[Dutta02] A. Dutta, H. Schulzrinne, S. Das, A. McAuley, W. Chen, O. Altintas, “MarconiNet
supporting Streaming Media over Localized Wireless Multicast”, M-Commerce
2002 Workshop, Atlanta, USA, September 2002

[Eckhardt96] D. Eckhardt, P. Steenkiste, “Measurement and Analysis of the Error Characteristics
of an In-building Wireless Network”, Computer Communications Review,
October 1996, pp. 243-254

 REFERENCES 159

[expect] http://expect.nist.gov/

[Eyers00] T. Eyers, H. Schulzrinne, “Predicting Internet Telephony Call Setup Delay,” Proc.
1st IP Telephony Wksp., Berlin, Germany, Apr. 2000

[Floyd02] S. Floyd, L. Daigle, “IAB Architectural and Policy Considerations for Open
Pluggable Edge Services”, RFC 3238, January 2002

[FreeRadius] Free Radius webpage, http://www.freeradius.org/

[Gao03] L. Gao, Z.-L. Zhang, D. Towsley, “Proxy-Assisted Techniques for Delivering
Continuous Multimedia Streams”, IEEE/ACM Transactions on Networking,
December 2003, pp. 884-894

[Gast02] M. Gast, “802.11 Wireless Networks – The Definitive Guide”, O’Reilly, 2002

[Guttman99] E. Guttman, C. Perkins, J. Veizades, M. Day, “Service Location Protocol, Version
2”, RFC 2608, June 1999

[Haardt00] M. Haardt, W. Mohr, “The Complete Solution for Third-Generation Wireless
Communications: Two Modes on Air, One Winning Strategy”, IEEE Personal
Communications., December 2000

[Halteren99] A. van Halteren, C. Hesselman, G. Koprinkov, G. Túquerres, D. de Vries, I.
Widya, “QoS Architecture – Amidst Perspective”, Amidst Deliverable 3.1.2,
November 1999,
http://amidst.ctit.utwente.nl/workpackages/wp3/documents/d312.pdf

[Handley98] M. Handley, V. Jacobson, “SDP: Session Description Protocol”, RFC 2327, April
1998

[Haratcherev04] I. Haratcherev, K. Langendoen, R. Lagendijk, H. Sips, “Hybrid Rate Control for
IEEE 802.11”, ACM International Workshop on Mobility Management and
Wireless Access Protocols (MobiWac), Philadelphia, PA, October 2004

[Helmy00] A. Helmy, “A Multicast-based Protocol for IP Mobility Support”, ACM Second
International Workshop on Networked Group Communication (NGC 2000), Palo
Alto, USA, November 2000

[Hesselman01] C. Hesselman, H. Eertink, A. Peddemors, “Multimedia QoS Adaptation for Inter-
tech Roaming”, Proceedings of the 6th IEEE Symposium on Computers and
Communications (ISCC’01), Hammamet, Tunisia, July 2001

[Hesselman02] C. Hesselman, I. Widya, H. Eertink, E. Huizer, “A Comprehensive Framework for
Broadcasting Multimedia Content in the Future Mobile Internet”, Proceedings of
the 2nd IEEE Workshop on Applications and Services in Wireless Networks
(ASWN'02), Paris, France, July 2002

[Hesselman03] C. Hesselman, H. Eertink, I. Widya, E. Huizer, “A Mobility-aware Broadcasting
Infrastructure for a Wireless Internet with Hotspots”, Proceedings of the First
ACM International Workshop on Wireless Mobile Applications and Services on
WLAN Hotspots (WMASH'03), San Diego, USA, September 2003

[Hesselman05] C. Hesselman, H. Eertink, I. Widya, E. Huizer, “Delivering Live Multimedia
Streams to Mobile Hosts in a Wireless Internet with Multiple Content
Aggregators”, to appear in Mobile Networks and Applications journal (Kluwer
Wireless), Special Issue on Wireless Mobile Applications and Services on WLAN
Hotspots, Summer 2005

160 REFERENCESREFERENCES

[Hoene03] C. Hoene, A. Günther, A. Wolisz, “Measuring the Impact of Slow User Motion on
Packet Loss and Delay over IEEE 802.11b Wireless Links”, In Proc. of Workshop
on Wireless Local Networks (WLN) 2003, Bonn, Germany, Oct. 2003

[Hsieh03] H-Y. Hsieh, K-H. Kim, Y. Zhu, R. Sivakumar, “A Receiver-Centric Transport
Protocol for Mobile Hosts with Heterogeneous Wireless Interfaces”, Proc.
MobiCom 2003, San Diego, USA, September 2003

[jtg] jtg v1.69, http://www.cs.helsinki.fi/u/jmanner

[Kamilova05] M. Kamilova, C. Hesselman, I. Widya, E. Huizer, “Adding Policy-based Control to
Mobile Hosts Switching between Streaming Proxies” (short paper), Proc. of the
Sixth IEEE Intl. Workshop on Policies for Distributed Systems and Networks
(POLICY 2005), Stockholm, Sweden, June 2005.

[Karrer01] R. Karrer, T. Gross, “Dynamic Handoff of Multimedia Streams”, In Proc.
NOSSDAV '01, pages 125-133, Danfords on the Sound, Port Jefferson, New York,
June 2001.

[Kempf00] J. Kempf, J. Goldschmidt, “Mobile Code for Network Service Access”, INET
2000, Yokohama, Japan, July 2000, http://
www.isoc.org/inet2000/cdproceedings/3c/3c_2.htm

[Kim01] K. Kim, H. Lee, K. Chung, “A Distributed Proxy Server System for Wireless
Mobile Web Services”, 15th International Conference on Information Networking
(ICOIN’01), Beppu City, Oita, Japan, January-February 2001

[kismet] http://www.kismetwireless.net/

[Kleinrock03] L. Kleinrock, “An Internet Vision: the Invisible Global Instrastructure”, AdHoc
Networks Journal, Vol. 1, No. 1, pp. 3-11, July 2003

[Køien03] G. Køien, T. Haslestad, “Security Aspects of 3G-WLAN Interworking”, IEEE
Communications Magazine, November 2003, pp. 82-88

[Kouvelas98] I. Kouvelas, V. Hardman, J. Crowcroft, “Network Adaptive Continuous-Media
Applications Through Self Organised Transcoding”, Proc. Network and Operating
Syst. Support for Digital Audio and Video (NOSSDAV’98), July 1998, Cambridge,
UK

[Kueh04] V. Kueh, R. Tafazolli, B. Evans, “Performance of VoIP Call Set-up Over Satellite-
UMTS Using Session Initiation Protocol”, European Wireless Conference 2004,
Barcelona, Spain, February 2004

[Kutscher03] Kutscher, Ott, Bormann, “Session Description and Capability Negotiation”,
Internet Draft, draft-ietf-mmusic-sdpng-06.txt, March 2003

[Kwon02] T. Kwon, M. Gerla, S. Das, S. Das, “Mobility Management for VoIP Service:
Mobile IP vs. SIP”, IEEE Wireless Communications, October 2002, pp. 2-11

[Landfeldt99] B. Landfeldt, T. Larsson, Y. Ismailov, A. Seneviratne, “SLM, a Framework for
Session Layer Mobility Management”, In Proc. IEEE ICCCN, October 1999

[Latvakoski02] E. Latvakoski, P. Laurila, “Application-based Access System Selection Concept for
All-IP Mobile Terminals”, IEEE Globecom 2002, Nov 2002, Taipei, Taiwan

[Li02] M. Li, M. Claypool, M. Rinicki, “MediaPlayerTM versus RealPlayerTM – A
Comparison of Network Turbulence”, Proceedings of the ACM SIGCOMM
Internet Measurements Workshop, Marseille, France, November 2002

 REFERENCES 161

[Liao99] W. Liao, “Mobile Internet Telephony Protocol (MITP): an Application-Layer
Protocol for Mobile Internet Telephony Services”, Proc. IEEE ICC’99, Vancouver,
Canada, June 1999

[Maltz98] D. Maltz, P. Bhagwat, “MSOCK: An Architecture for Transport Layer Mobility”, In
Proc. IEEE Infocom, March 1998

[Markoulidakis97] G. Markoulidakis, G. Lyberopoulos, D. Tsirkas, E. Sykas, “Inter-Operator
Roaming Scenarios for Third Generation Mobile Telecommunication Systems”,
2nd IEEE Symposium on Computers and Communications (ISCC’97), Alexandria,
Egypt, July 1997

[Marshall03] W. Marshall, “Private Session Initiation Protocol (SIP) Extensions for Media
Authorization”, RFC 3313, Jan. 2003

[McCanne96] S. McCanne, V. Jacobson, M. Vetterli, “Receiver-driven Layered Multicast”, Proc.
of ACM SIGCOMM, Stanford, USA, August 1996

[Microsoft00] Microsoft Corporation, “Universal Plug and Play Device Architectute”, Version
1.0, June 2000, http:// www.upnp.org/download/UPnPDA10_20000613.htm

[Mishra03] A. Mishra, M. Shin, W. Arbaugh, “An Empirical Analysis of the IEEE 802.11 MAC
Layer Handoff Process” ACM SIGCOMM Computer Communication Review,
Volume 33, Number 2, April 2003, pp. 93-102

[Mishra04] A. Mishra, M. Shin, N. Petroni, T. Clancy, W. Arbaugh, “Proactive Key Distibution
Using Neighbor Graphs”, IEEE Wireless Communications, Feb. 2004, pp. 26-36

[Moessner02] K. Moessner, S. Hope, P. Cook, W. Tuttlebee, R. Tafazolli, “The RMA - A
Framework for Reconfiguration of SDR Equipment”, IEICE Transactions on
Communication, Vol. E85-B, No.12, pp.2573-2580, December 2002

[Nakajima03] N. Nakajima, A. Dutta, S. Das, H. Schulzrinne, “Handoff Delay Analysis for SIP
Mobility in IPv6 Testbed”, IEEE International Conference on Communications,
Anchorage, Alaska, USA, May 2003

[Nomura03] Y. Nomura, R. Walsh, J. Ott, H. Schulzrinne, “Protocol Requirements for Internet
Media Guides”, Internet Draft, draft-ietf-mmusic-img-req-00.txt, September 2003

[Norton02a] W. Norton, “Internet Service Providers and Peering”, White Paper (v2.5),
February 2002, http://www.equinix.com/pdf/whitepapers/PeeringWP.2.pdf

[Norton02b] W. Norton, “A Business Case for ISP Peering”, White Paper (v1.3), February
2002, http://www.equinix.com/pdf/whitepapers/Business_case.pdf

[OpenSIP] oSIP webpage, http://www.gnu.org/software/osip/

[Pack02] S. Pack, Y. Choi, “Fast Inter-AP Handoff Using Predictive Authentication Scheme
in a Public Wireless LAN”, Networks 2002 (Joint ICN 2002 and ICWLHN 2002),
Atlanta, USA, pp.15-26, August 2002

[Pahlavan00] K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J. Makela, R. Pichna, J.
Vallström, “Handoff in Hybrid Mobile Data Networks”, IEEE Personal
Communications, April 2000

[Peddemors04] A. Peddemors, H. Zandbelt, M. Bargh, “A Mechanism for Host Mobility
Management Supporting Application Awareness”, MobiSys’04, Boston,
Massachusetts, USA, June 2004, pp. 231-244

[Peterson03] J. Peterson, “Enhancements for Authenticated Identity Management in the Session
Initiation Protocol (SIP)”, Internet Draft, Feb. 2003, draft-ietf-sip-identity-01.txt

162 REFERENCESREFERENCES

[Plagemann03] T. Plagemann, V. Goebel, L. Mathy, N. Race, M. Zink, “Towards Scalable and
Affordable Content Distribution Services”, Proc. 7th International Conference on
Telecommunications (ConTEL 2003), Zagreb, Croatia, June 2003

[Pollini96] G. Pollini, “Trends in Handover Design”, IEEE Communications Magazine, March
1996, also available through IEEE Communications Surveys,
http://www.comsoc.org/pubs/surveys/pollini/pollini-org.html

[Punnoose01] R. Punnoose, R. Tseng, D. Stancil, “Experimental Results for Interference between
Bluetooth and IEEE 802.11b DSSS Systems”, IEEE Vehicular Society Conference,
October 2001

[Ramjee99] R. Ramjee, T. La Porta, S. Thuel, K. Varadhan, “HAWAII: A Domain-based
Approach for Supporting Mobility in Wide-area Wireless Networks”, Seventh
International Conference on Network Protocols, Toronto, Canada, 1999

[Rasmusson04] J. Rasmusson, F. Dahlgren, H. Gustafsson, T. Nilsson, “Multimedia in mobile
phones - The ongoing revolution”, Ericsson Review no. 02, 2004,
http://www.ericsson.com/mobilityworld/sub/articles/other_articles/05jan05

[Roach02] A. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”, RFC
3265, June 2002

[Rosenberg02a] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.
Handley, E. Schooler, “SIP: Session Initiation Protocol”, RFC 3261, June 2002

[Rosenberg02b] J. Rosenberg, H. Schulzrinne, “An Offer/Answer Model with the Session
Description Protocol (SDP)”, RFC 3264, June 2002

[Rosenberg98] J. Rosenberg, H. Schulzrinne, “Internet Telephony Gateway Location”, Proc. IEEE
Infocom’98, March 1998

[Roy02] S. Roy, B. Shen, V. Sundaram, R. Kumar, “Application Level Hand-off Support for
Mobile Media Transcoding Sessions”, NOSSDAV’02, Miami Beach, Florida, May
2002

[Saltzer84] J. Saltzer, D. Reed, D. Clark, “End-to-end Arguments in System Design”, ACM
Transactions on Computer Systems, Vol. 2, Issue 4, Nov. 1984, pp. 277-288

[Satyanarayanan01] M. Satyanarayanan, “Pervasive computing: vision and challenges”, IEEE
Personal Communications, Aug 2001, pp. 10-17

[Schulzrinne02] H. Schulzrinne, “Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option
for Session Initiation Protocol (SIP) Servers”, RFC 3361, August 2002

[Schulzrinne96a] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications”, RFC 1889, January 1996

[Schulzrinne96b] H. Schulzrinne, “RTP Profile for Audio and Video Conferences with Minimal
Control”, RFC 1890, January 1996

[Schulzrinne98] H. Schulzrinne, A. Rao, R. Lanphier, “Real Time Streaming Protocol (RTSP)”,
RFC 2326, April 1998

[SDR] SDR at UCL, http://www-mice.cs.ucl.ac.uk/multimedia/software/sdr/

[Seneviratne98] A. Seneviratne, B. Sarikaya, “Cellular Networks and Mobile Internet”, Computer
Communications, Sept. 1998

[Shin04] S. Shin, A. Rawat, H. Schulzrinne, “Reducing MAC Layer Handoff Latency in IEEE
802.11 Wireless LANs”, MobiWac’04, Philadelphia, Pennsylvania, USA, Oct. 2004

 REFERENCES 163

[Snoeren00] A. Snoeren, H. Balakrishnan, “An end-to-end Approach to Host Mobility”, ACM
MobiCom, August 2000

[Snoeren01] A. Snoeren, H. Balakrishnan, F. Kaashoek, “Reconsidering Internet Mobility”, In
Proc. 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII),
Elmau/Oberbayern, Germany, May 2001

[Snoeren01b] A. Snoeren, D. Andersen, H. Balakrishnan, “Fine-Grained Failover Using
Connection Migration”, Proc. USENIX USITS, San Fransisco, USA, March 2001

[Solomon98] J. Solomon, “Mobile IP — The Internet Unplugged”, Prentice Hall, 1998

[Stemm98] M. Stemm, R. Katz, “Vertical Handoffs in Wireless Overlay Networks”, ACM
Mobile Networking, Special Issue on Mobile Networking and Internet, Spring
1998

[Sultan02] F. Sultan, K. Srinivasan, D. Iyer, L. Iftode, “Migratory TCP: Connection Migration
for Service Continuity in the Internet”, Proc. IEEE ICDCS, Vienna, Austria, July
2002

[Tan99] C. Tan, S. Pink, K. Lye, “A Fast Handoff Scheme for Wireless Networks”, Proc.
2nd ACM Workshop on Wireless Mobile Multimedia (WoWMoM’99), Seattle,
Aug. 1999

[tcpdump] http://www.tcpdump.org/

[TINA97] TINA Consortium, “Business network and Reference Points”, Chapter 2, May
1997, http://www.tinac.com/specifications/documents/bm_rp.pdf

[Tripathi98] N. Tripathi, J. Reed, H. VanLandingham, “Handoff in Cellular Systems”, IEEE
Personal Communications, Dec. 1998

[Trossen03] D. Trossen, H. Chaskar, “Seamless Mobile Applications across Heterogeneous
Internet Access”, IEEE ICC 2003, May 2003, Anchorage, Alaska, USA

[Vatn03] J.-O. Vatn, “An Experimental Study of IEEE 802.11b Handover Performance and
its Effect on Voice Traffic”, Technical Report, Royal Institute of Technology,
Stockholm, Sweden, July 2003

[Vatn98] J.-O. Vatn, G. Maguire, “The effect of using co-located care-of addresses on macro
handover latency”, Fourteenth Nordic Tele-traffic Seminar (NTS 14), Lyngby,
Denmark, August 1998

[Velayos03] H. Velayos, G. Karlsson, “Techniques to Reduce IEEE 802.11b MAC Layer
Handover Time” Technical Report, Royal Institute of Technology, Stockholm,
Sweden, April 2003

[Verhoosel03] J. Verhoosel, R. Stap, A. Salden, "A Generic Business network for WLAN Hotspots
– A Roaming Business Case in The Netherlands", Proceedings of the first ACM
International Workshop on Wireless Mobile Applications and Services on WLAN
Hotspots (WMASH'03), San Diego, USA, September 2003

[Vernick01] M. Vernick, S. Bryden, M. Condry, G. Disher, J. Straley, W. Walkoe,
“Requirements for End-To-End Delivery of Broadband Content”, Broadband
Content Delivery Forum, Oct. 2001

[VIC] VIC at UCL, http://www-mice.cs.ucl.ac.uk/multimedia/software/vic/

[Wang99] H. Wang, R. Katz, J. Giese, “Policy-Enabled Handoffs Across Heterogeneous
Wireless Networks”, 2nd IEEE Workshop on Mobile Computing and Applications
(WMCSA 1999), New Orleans, USA, February 1999

164 REFERENCES

[Wang04] X. Wang, “MPEG-21 Rights Expression Language: enabling interoperable digital
rights management”, IEEE Multimedia, Vol. 11, Issue 4, Oct.-Dec. 2004

[Wedlund99] E. Wedlund, H. Schulzrinne, “Mobility Support Using SIP”, 2nd ACM/IEEE Int.
Conf. on Wireless and Mobile Multimedia (WoWMoM’99), Seattle, USA, Aug.
1999

[Wee03] S. Wee, J. Apostolopoulos, W.-T. Tan, S. Roy, “Research and Design of a Mobile
Streaming Media Content Delivery Network”, International Conference on
Multimedia and Expo (ICME’03), Baltimore, Maryland, USA, July 2003

[Westerinen01] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A.
Huynh, M. Carlson, J. Perry, S. Waldbusser “Terminology for Policy-Based
Management”, RFC 3198. November 2001

[Wired04] “Let the Web Games Begin”, Wired Magazine, August 2004,
http://www.wired.com/news/culture/0,1284,64562,00.html

[Wong03] K. Wong, V. Varma, “Supporting Real-Time IP Multimedia Services in UMTS”,
IEEE Communications Magazine, November 2003

[Wu97] L. Wu, R. Sharma, B. Smith, “Thin Streams: An Architecture for Multicast Layered
Video”, 7th Intl. Workshop on Network an Operating Systems Support for Digital
Audio and Video (NOSSDAV97), St. Louis, USA, May 1997

[Xiao99] X. Xiao, L. Ni, “Internet QoS: A Big Picture”, IEEE Network, March/April 1999,
pp. 8-18

[MobileIT04] Mobile IT Forum, “Flying Carpet 2.0: report on the activities of the 4th
Generation Mobile Communications Committee”, Tokio, April 2004,
http://www.mitf.org/public_e/archives/Flying_Carpet_Ver200.pdf

[Xu00] D. Xu, K. Nahrstedt, “Supporting Multimedia Service Polymorphism in Dynamic
and Heterogeneous Environments”, Technical Report UIUCDCS-R-2000-2159,
University of Illinois at Urbana-Champaign, USA, October 2000

[Yeadon96] N. Yeadon, F. Garcia, D. Hutshison, D. Shepherd, “Filters: QoS Support
Mechanisms for Multipeer Communications”, IEEE Journal on Selected Areas in
Comm., Sept. 1996

[Zenel97] B. Zenel and D. Duchamp, “A General Purpose Proxy Filtering Mechanism
Applied to the Mobile Environment”, Proc. 3rd ACM/IEEE Intl. Conference on
Mobile Computing and Networking, Budapest, Hungary, Sept. 1997

[Zhuang03] W. Zhuang, Y.S. Gan, K.J. Loh, K.C.Chua, “Policy-based QoS Management
Architecture in an Integrated UMTS and WLAN Environment”, IEEE
Communications Magazine, November 2003, pp. 118-12

