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Abstract 

In this thesis, we consider the efficient distribution of live and scheduled 
multimedia content (e.g., radio and TV broadcasts) to mobile users via a 
ubiquitous wireless Internet. The objective is to design and develop a 
content delivery system that (1) enables content owners to deliver their 
multimedia content to a large number of heterogeneous receivers, and (2) 
enables receivers to continuously receive that content, independent of their 
location and the network they connect to. 

Previous investigations into this topic have shown that multimedia 
content can be efficiently distributed through an overlay network that 
consists of multiple distributed proxy servers. In this thesis, we extend this 
concept to the distribution of live and scheduled multimedia content 
through multiple aggregators. An aggregator is an intermediary content 
provider that aggregates live multimedia content from various content 
sources (e.g., news services) and delivers it to mobile users through a pool 
of proxy servers. The availability of the same content through multiple 
aggregators enables mobile users to switch from one aggregator to another, 
thus alternately receiving the same content from different aggregators. The 
service area of an aggregator may be restricted to a certain set of networks, 
in which case switching to such an aggregator also requires mobile hosts to 
handoff to a network that is part of the aggregator’s service area. 

We call the system that switches a mobile host to another aggregator the 
ALIVE system, which stands for Aggregator Switching System for Mobile 
Receivers of Live Multimedia Streams. We concentrate on the ‘front-end’ 
of the ALIVE system, which supports mobile users and mobile hosts, 
aggregators, and wireless networks. We particularly focus on the signaling 
interactions between mobile hosts and aggregators and do not consider the 
details of the multimedia content itself. 

The design of the ALIVE system is based on the ALIVE business network, 
which is a network of business roles (consisting of roles such as ‘aggregator’ 
and ‘end-user’) that describes the relations that may exist between domains 
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involved in the distribution of live multimedia content through multiple 
aggregators. In line with current trends in content distribution, the ALIVE 
business network consists of an application-level part (an overlay that 
consists of content sources and aggregators) and a network-level part 
(consists of providers of basic Internet access). We capture the properties 
of the relations in the business network in so-called “agreements”. 

The ALIVE business network uses the notion of a channel to refer to a 
particular piece of content (e.g., a TV broadcast). To further increase the 
number of potential receivers, aggregators in the ALIVE business network 
are able to transmit channels in various configurations. A configuration 
delivers a channel in a specific perceptual quality and requires a well-
defined level of resources (e.g., network bandwidth). Aggregators may 
choose to support a relatively small number of configurations, thus striking 
a balance between per-user personalization of a channel (e.g., by delivering 
a channel in a configuration that is tailored to the instantaneous bandwidth 
available to a specific user’s mobile host) and no personalization at all (i.e., 
everybody receiving a channel in the same configuration). 

To support roaming users, aggregators establish application-level 
roaming agreements between each other. These agreements enable users to 
receive channels from multiple aggregators (e.g., at different locations) 
while having a subscription with only a few of them (typically one). 
Application-level roaming agreements define the configurations in which a 
user can receive channels from an aggregator with which the user does not 
have a subscription (called a foreign aggregator). 

An aggregator may be bound to a specific set of networks through a so-
called “binding agreement” with Internet access providers. In the ALIVE 
business network, such an aggregator is called a local aggregator because the 
binding agreement restricts its service area to the networks of the involved 
access provider. An Internet access provider may use local aggregators to 
offer exclusive channels or channel configurations to the users that connect 
to the access provider’s networks (cf. the walled-garden models that 
contemporary cellular operators typically use). 

The ALIVE system itself enables mobile users to roam in an unrestricted 
manner while continuously receiving a channel. The system transparently 
switches mobile hosts from one aggregator to another and executes 
handoffs on the mobile host’s network interfaces. The system switches a 
mobile host to the aggregator that provides a certain channel in the best 
configuration, where ‘best’ is defined by the preferences of the end-user. 
This makes the ALIVE system a user-centric system. 

The ALIVE system is scalable because most of its logic resides on mobile 
hosts (mobile-controlled switching). The system’s operation is policy-
controlled, which enables stakeholders in the ALIVE business network to 
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flexibly change the rules that the ALIVE system uses to make decisions (e.g., 
when to look for another available configuration of a channel). 

The ALIVE system contains an application-level protocol, which we 
realized using the Session Initiation Protocol (SIP) and the Session 
Description Protocol (SDP), both of which are Internet standards. We 
deployed our implementation in a small-scale testbed with different types of 
networks, which represent the ‘beyond 3G’ Internet environment in which 
the ALIVE protocol is intended to operate. 

Trough an analysis of our SIP-based implementation of the ALIVE 
protocol, we obtained quantitative information on how to smoothly execute 
switches between aggregators. Our analysis concentrates on the extra delay 
introduced by the ALIVE protocol in a contemporary wireless Internet 
environment, specifically consisting of 802.11 hotspots and UMTS/GPRS 
overlays. We focus on the operation of the ALIVE protocol immediately 
after a handoff to another 802.11 access provider, which is where the 
ALIVE protocol typically comes into play. After a handoff, the ALIVE 
system usually first attempts to discover the configurations in which the 
user can receive a channel from the local aggregators on the new network. 
At the edges of 802.11 cells, this may result is a significant delay because of 
the exponential back-off mechanism that SIP uses to recover from packet 
loss. 

Our analysis consists of two parts: (1) a heuristic analysis of the 
application and network-level delay components involved in a typical switch 
and an estimation of their best-case values, and (2) an empirical analysis of 
the delay introduced by SIP transactions under various 802.11 network 
conditions. The analysis shows that the ALIVE system usually experiences 
little delay, except at the very edge of an 802.11 cell. 

Based on our implementation and measurement work, we conclude that 
the ALIVE system is a feasible system that provides a clear contribution to 
the multimedia-everywhere vision. 
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Chapter 1 

1. Introduction 

The landscape of wireless and mobile networks has changed considerably 
during the last decade. This holds for local personal area networks (like 
Bluetooth or UWB), nomadic networks (for instance wireless LANs) and 
mobile networks (such as GSM and UMTS). Figure 1-1 illustrates this 
(taken from [MobileIT04]). 
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An important observation is that the advances in networking increase the 
number of available networking technologies. For example, GSM and GPRS 
technologies will not disappear once UMTS is rolled out, and neither will 
802.11 networks when their 100 MBit/s successors become available.  

At the same time, the capabilities of new generations of mobile devices 
continue to increase as well [Rasmusson04]. There is a strong convergence 
between mobile phones and computers, resulting in smart phones with 

Figure 1-1. 
Developments in 
wireless and mobile 
networks. 
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multimedia capabilities, and personal digital assistants with telephony 
capabilities. Also, in the home the consumer electronics equipment and the 
computer integrate. The prime example of this is the launch in 2004 of 
Windows Media Center edition, a direct competitor of advanced consumer 
electronics devices and TV sets. 

These developments lead to a large number of new distribution channels 
for providers of multimedia content. TV and radio channels, for instance, 
can be broadcast over any Internet access technology instead of via 
broadcast networks only. 

This thesis must be read in the light of these trends and developments. 
It focuses on the delivery of multimedia live and scheduled content to 
mobile users. 

1.1 Challenges and Objectives 

In this thesis, we concentrate on the delivery of live and scheduled 
multimedia content (e.g., radio or TV broadcasts) over a ubiquitous 
Internet infrastructure consisting of different types of (wireless) access 
networks. Since the capabilities of networks and mobile hosts typically vary 
[Haardt00, Drew01], our first challenge is: 

How can content providers deliver live multimedia content to a potentially large 
number of mobile hosts that have varying capabilities and connect to the Internet 
through different types of (wireless) networks? 

One way to accomplish this is through an overlay network, which is usually 
referred to as a content distribution network [Wee03, Plagemann03, 
Day01]. For content distribution to mobile hosts, a few specific approaches 
exist in which multimedia content is distributed through multiple 
distributed proxy servers, with mobile hosts switching from one server to 
another as a result of mobility (e.g., because different proxy servers serve 
different networks) [Dutta02, Kim01, Roy02, Trossen03]. In this thesis, we 
extend this concept to the distribution of live and scheduled multimedia 
content through multiple aggregators. An aggregator is an access-controlled 
intermediary service provider that aggregates live multimedia content from 
content sources (e.g., cnn.com1) and delivers it to mobile users through a 
pool of proxy servers. The availability of a the same content through 
multiple aggregators enables mobile users to switch from one aggregator to 
another, thus alternately receiving the same content from different 
aggregators. The service area of an aggregator may be restricted to a certain 

                                                       
1 The domain names in this thesis are for illustrative purposes only. 
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set of networks, in which case a switch to such an aggregator also requires a 
mobile host to handoff to a network that is part of the target aggregator’s 
service area. 

From the perspective of end-users, it is important that they continue to 
receive a particular multimedia transmission despite switches between 
aggregators and handoffs between networks. This is our second major 
challenge: 

How can mobile users seamlessly receive a multimedia transmission in a way they 
consider best while they roam across different aggregators or access networks? 

The objective of this thesis is to design a system that meets the challenges 
outlined above. We call this system the ALIVE system, which stands for 
Aggregator Switching System for Mobile Receivers of Live Multimedia 
Streams. 

Our work concentrates on the ‘front-end’ of the distribution network, 
which consists of mobile users and mobile hosts, aggregators, and wireless 
networks. We furthermore focus on the signaling interactions between 
mobile hosts and aggregators and do not consider the specifics of the 
multimedia content itself (e.g., in terms of packet forwarding, compression, 
and packetization mechanisms). 

1.2 Approach and Structure 

We follow an approach that consists of three steps: the design of the ALIVE 
business network (step 1), the design of the ALIVE system (step 2), and an 
analysis of the ALIVE system (step 3). The ALIVE business network forms 
the foundation of the ALIVE system. 

Step 1: Design of the ALIVE Business Network 
In step 1, we design the ALIVE business network. The ALIVE business 
network is a network of business roles (e.g., consisting of roles such as 
‘aggregator’ and ‘end-user’) that describes the relations that can exist 
between domains involved in the distribution of live multimedia content to 
mobile Internet users. 

The key characteristic of the ALIVE business network is that it allows 
content sources to distribute the same multimedia content via multiple 
aggregators, which enables mobile users to receive that content from any of 
these aggregators. The business network follows current trends in content 
distribution in that it consists of an application-level part (with content 
sources and aggregators) and a network-level part (with providers of 
Internet access). 
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To maximize the number of potential receivers in a heterogeneous 
environment, the aggregators in the ALIVE business network are able to 
transmit content in various configurations. Different configurations typically 
deliver the same content in different perceptual qualities and require 
different amounts of resources (e.g., network bandwidth). The 
configurations that an aggregator supports typically sample the 
‘configuration spectrum’ in a course way, thus striking a balance between 
one-configuration-for-all and individual per-user configurations (e.g., fine-
tuned to a user’s instantaneously available bandwidth). 

The ALIVE business network captures the properties of the relations in 
the business network in so-called agreements. The distinctive type of 
agreement in the ALIVE business network is that of an application-level 
roaming agreement, which is an agreement between two aggregators that 
enables users of one aggregator to receive content from the other aggregator 
without having an agreement (subscription) with that aggregator. An 
application-level roaming agreement also defines in which configurations a 
user can receive content from a foreign aggregator. Application-level 
roaming agreements are similar to traditional network-level agreements, 
except that they contain application-level information (mappings between 
configurations) instead of information about network connectivity. 

We discuss the ALIVE business network in Chapter 2 of this thesis. 

Step 2: Design of the ALIVE System 
In step 2, we design the ALIVE system. The goal of the ALIVE system is to 
automatically switch mobile hosts to the best possible aggregator in ‘mid-
call’, where the user’s preferences define what constitutes ‘best’. Automatic 
switching frees users from having to manually switch to another aggregator, 
which enables them to make use of a multiple-choice environment in a 
user-friendly manner [Kleinrock03, Latvakoski02, Satyanarayanan01]. This 
is particularly important in a mobile environment where the set of available 
aggregators can change as a result of user mobility (e.g., when a user roams 
into a network where he can use new aggregators that are unavailable 
outside that network). 

The system design puts as much of the system’s responsibilities with the 
mobile host as possible, which is in line with current Internet design 
principles and makes the system scalable. An alternative solution is to put 
the system’s responsibilities in access routers [Trossen03]. The advantage of 
this approach is that it integrates with Mobile IP [Solomon98]; the 
downside is that it requires a much more advanced and complex router 
infrastructure. 

The behavior of the ALIVE system is driven by policies, which enables 
stakeholders in the ALIVE system/business network (e.g., users and 
companies renting mobile hosts) to flexibly change the system’s behavior. 
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One of the components in the ALIVE system is the ALIVE protocol, 
which is responsible for the interactions between mobile hosts and 
aggregators. The ALIVE protocol is an application-level protocol that uses a 
minimal number of interactions between mobile hosts and aggregators to 
facilitate smooth switching. We implemented the ALIVE protocol using 
standard Internet protocols, specifically the Session Initiation Protocol 
(SIP) and the Session Description Protocol (SDP). 

We discuss the design of the ALIVE business network in Chapter 3. 

Step 3: Analysis of the ALIVE System 
In step 3, we analyze the delay incurred by our implementation of the 
ALIVE protocol (i.e., based on SIP). We focus on an environment with 
802.11 hotspots, where the ALIVE protocol typically comes into play at the 
edge of an 802.11 cell. At these edges, we experiment with the delays 
introduced by the ALIVE protocol, which may be substantial as a result of 
the exponential back-off retransmission scheme used by SIP to recover 
from packet loss. Such delays may hinder smooth switching. 

We discuss our analysis in Chapter 4. 

Conclusions and Related Work 
Chapter 5 provides conclusions and considers topics for future work. 
Related work can be found at the end of each chapter.





 

Chapter 2 

2. The ALIVE Business Network2 

This chapter considers the design of the ALIVE business network. The ALIVE 
business network is a network of business roles that describes the possible relations 
between domains involved in the distribution of live and scheduled multimedia content 
to mobile Internet users. The network revolves around the notion of an aggregator, 
which is a role that receives live multimedia content from content sources (e.g., 
cnn.com) and forwards it to mobile users. The distinctive characteristic of the ALIVE 
business network is that it allows the same content (e.g., ‘CNN TV’) to be 
simultaneously distributed via multiple aggregators. This enables users to receive a 
certain part of a live multimedia transmission from one aggregator at one point and 
then switch to another aggregator to continue to receive the transmission from the new 
aggregator. The ALIVE business network forms the foundation of the ALIVE system 
(Chapter 3), which automatically switches a user’s mobile host to the best aggregator. 

This chapter begins with a brief explanation of how we interpret the notion of a 
business network (Section 2.1). Next, we discuss the ALIVE business network itself, 
which consists of three parts: an application-level part that primarily deals with 
content distribution (Section 2.2), a network-level part that focuses on transporting 
IP packets (Section 2.3), and a cross-level part that ties these two levels together 
(Section 2.4). The emphasis of our work is on the application and cross-level parts. 
We conclude this chapter with a discussion on related work (Section 2.5) and a 
summary (Section 2.6). 

2.1 Business Networks 

In this thesis, we think of a business network as a graph in which the nodes 
are business roles (Section 2.1.1) and the edges are business relations (Section 
2.1.2). Both of these concepts are inspired by the corresponding notions in 
the TINA Business Model [TINA97]. 
                                                       
2 This chapter is based on [Hesselman02], with updates from [Hesselman03] and 
[Hesselman05]. 
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2.1.1 Business Roles 

The delivery of a (multimedia) service to end-users generally requires a 
number of high-level activities such as ‘content generation’, ‘data transport’, 
and ‘content play back’. A business role encompasses a subset of these 
activities, which may be assigned to the business role for economical, 
technical, or legislative reasons [TINA97]. Examples of business roles are 
content providers, IP connectivity providers, terminal providers 
[DOLMEN98], location owners, infrastructure owners [Verhoosel03], and 
so forth. 

Business Networks 
A business network consists of a number of business roles. Each role in the 
network is responsible for a certain part of the activities to deliver a service 
to end-users. In this thesis, we assume that end-users are persons and not 
organizations. 

Figure 2-1 shows an example of a simple business network in which the 
role ‘content provider’ is responsible for transmitting live multimedia 
content to Internet users (1), and the role ‘access provider’ is responsible 
for transporting content to and from the Internet backbone in the form of 
IP packets (2, 3).  

content
provider

user

access
provider(2) (3)

(1)

Internet
backbone

 

Figure 2-1 also shows that the grouping of activities into business roles can 
be driven by different criteria. For example, the motivation to distinguish 
content providers on the one hand and access providers on the other is 
primarily a technical one (processing multimedia content is quit different 
from transporting it). At the same time, the distinction is also economical: 
it is very likely that content providers are willing to pay for the transport 
services of access providers to increase the number of viewers of their 
content. 

Figure 2-1. Simple 
example of a business 
network. 
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Administrative Domains 
An administrative domain is a set of computing and communications devices 
(e.g., servers, routers, base stations, and so on) owned by a single 
organization or person. An administrative domain plays one or more roles 
and uses its devices to realize the activities associated with these roles. For 
example, content providers use servers that enable clients to retrieve 
(multimedia) content, and access and backbone providers use (sub) IP-level 
devices (e.g., routers and base stations) to transport IP traffic. 

Figure 2-2 shows an example of how the roles of the business network of 
Figure 2-1 can be distributed across administrative domains, in this case 
broadcast.com, access.com, and hotspot.nl. 

content domain role

bobbroadcast.com access.com hotspot.nl

access
provider

content
provider

access
provider

Internet
backbone

 

In general, each domain can play one or more roles. For example, domain 
hotspot.nl could also be a content provider, for instance by inserting local 
ads into the multimedia content coming from broadcast.com (cf. 
[Dutta02]). The examples in this thesis will however mostly involve 
domains playing one role. 

For simplicity, we only use domain names in this thesis. We do not 
distinguish between a domain name (e.g., broadcast.com) and the owner of 
that domain (which may be company X that also owns access.com).  

2.1.2 Business Relationships 

Business roles are connected into a business network by business 
relationships. A business relationship is a user-provider relationship 
[Halteren99, TINA97], which can for instance be of an economical nature 
(end-users paying providers for their services) or of a technical nature (e.g., 
content providers making use of access providers) [TINA97]. The example 
business network of Figure 2-1 involves three user-provider relationships: 
one between the content provider and the end-user, one between the 
content provider and the access provider (the content provider being the 
user), and one between the end-user and the access provider. 

A business relationship may be a bi-directional user-provider 
relationship (e.g., a roaming relationship between two GSM access 
providers), which is usually referred to as a federation [DOLMEN98]. 

Figure 2-2. Distribution 
of roles across domains.  
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Agreements 
We describe the properties of a business relationship in an agreement. An 
agreement typically specifies which services the user role in the relationship 
can receive from the provider role (e.g., at most 1 Mbps of best-effort 
downstream connectivity). This may also include a pricing model and user 
and provider obligations (e.g., the amount of up time), but these two topics 
are outside the scope of this thesis. 

In general, agreements can be established in many ways. They can for 
instance be set up in an on-line or an off-line manner, or bilaterally or 
through a broker [3GPP99]. In addition, agreements can exist for a ‘longer’ 
or a ‘shorter’ period of time (e.g., as long as a user receives a service from a 
provider) [DOLMEN98]. In this thesis, we do not make any assumptions 
on the way in which agreements are established or on how long they exist. 
We abstract away from these issues by assuming that the agreements that 
our model requires (see sections 2.2, 2.3, and 2.4) have already been 
established. 

2.2 Application-level Part: Content Distribution 

Similar to other business networks (e.g., [TINA97, DOLMEN98, 
Vernick01]), the ALIVE network consists of an application-level part and a 
network-level part. This section discusses the application-level part of the 
ALIVE business network, which consists of business roles that are 
responsible for delivering live or scheduled multimedia content (e.g., a TV 
broadcast) to mobile users over the Internet. The central notion is that of a 
content aggregator, which is a business role that redistributes live multimedia 
content (e.g., a TV broadcast) to mobile users. 

We first discuss the application-level roles of the business network 
(Section 2.2.1) and the relations that exist between them (Section 2.2.2). 
After that, we briefly consider alternative types of business networks 
(Section 2.2.3) and take a look at the notion of a configuration (Section 
2.2.4), which is set of streams that carry a piece of multimedia content 
using specific compression and packetization parameters. Next, we discuss 
the application-level agreements of the ALIVE business network (Section 
2.2.5). 

2.2.1 Sources and Aggregators 

The application-level roles of the ALIVE business network are those of a 
content source and a content aggregator. Together, they deliver content 
channels to mobile users. In this thesis, a content channel is the logical 
content that end-users receive (e.g., ‘CNN TV’). 
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Content Source 
A content source (e.g., cnn.com) is the origin of one or more channels. In 
this thesis, we assume that each channel originates at one source. A source 
consists of one or more media servers. 

Content Aggregator 
The central role in the ALIVE business network is that of a content 
aggregator. A content aggregator receives channels from sources and 
redistributes them to mobile users. In general, it is possible to deliver 
channels to mobile users through an aggregator hierarchy of depth h ≥ 1 
(cf. the clusters of [Chawathe02]). To keep our business network simple, 
we assume that h equals one in this thesis. 

An aggregator typically transmits channels off a pool of media servers 
(cf. [Chawathe02, Amir98]). 

Users and Mobile Hosts 
We assume that each user is logged onto one mobile host and that a mobile 
host is used by one user. As a result, we use the terms mobile user and 
mobile host interchangeably, unless the distinction is required.  

2.2.2 Business Network 

The ALIVE business network is organized such that (1) sources distribute 
channels through aggregators and (2) users need to set up an agreement 
with aggregators to be able to receive channels. We call this a portal type of 
network since aggregators shield sources off from users. We refer to Section 
2.2.3 for a discussion on alternative business network types (e.g., a pure 
end-to-end model) and to Section 2.2.5 for the details on the contents of 
the agreements between users and aggregators. 

Multi-Aggregator Distribution 
The distinctive characteristic of the ALIVE business network is that it allows 
the same channel (e.g., CNN TV) to be simultaneously distributed via 
multiple aggregators. This enables users to receive that content from one 
aggregator at one point and then make a switch to receive the content from 
another aggregator (e.g., when the current aggregator becomes unavailable 
as a result of the user moving into another network). Application-level 
roaming agreements between aggregators facilitate these switches in that 
they enable users to receive content from multiple aggregators while having 
a subscription (agreement) with only a few of them (typically one). We will 
discuss the contents of these roaming agreements in Section 2.2.5. 

Figure 2-3 shows a typical instance of the ALIVE business network in 
which user Bob can receive channels CNN TV and BBC Radio through two 
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aggregators, stream-it.com and media-forward.nl. In this specific example, 
Bob has an agreement with media-forward.nl, but receives CNN TV from 
stream-it.com. This is possible because the two aggregators have set up an 
application-level roaming agreement. Figure 2-3 shows that sources and 
aggregators need to set up agreements as well. In the ALIVE business 
network, these agreements define how aggregators can forward channels 
(e.g., if they are allowed to transcode them to a lower quality). We will 
discuss them in more detail in Section 2.2.5. Observe that Figure 2-3 does 
not show Bob’s mobile host. 

stream-it.com

media-forward.nl

cnn.com

bob@media-forward.nl

media server
source

aggregator
CNN TV

BBC Radio

bbc.co.uk

roam
ing agreem

ent
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tion
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Pros and Cons for Sources 
A source typically benefits from a portal type of business network because 
aggregators increase the source’s scalability. This is particularly important 
when the source has to serve a potentially large number of users, as is the 
case in the ALIVE business network. Instead of unicasting a channel N 
times to N mobile hosts, a source could for instance unicast them to a small 
number of aggregators. Each of the aggregators would then forward the 
channels to a subset of the N mobile hosts. This scheme reduces the load 
on the source (it has fewer concurrent outstanding connections to deal 
with) and will also reduce its bandwidth consumption because it does not 
have to transmit N copies of the same channel. Both of these aspects 
increase the scalability of the source [Rosenberg98].  

IP Multicast can also reduce the number of concurrent connections that 
a source has to deal with, for instance by multicasting a channel from a 

Figure 2-3. Example use 
of sources and 
aggregators. 
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source directly to receivers (e.g., [Wu97, McCanne96, Cheung96]), or by 
using IP Multicast on the paths where it is available (e.g., between the 
source and a number of aggregators). However, the usefulness of such 
schemes depends on the availability of IP Multicast, which is limited at this 
point [Chennikara02]. 

Reduced bandwidth consumption has the side effect that it typically also 
reduces the source’s transit costs [Norton02a], which are the costs a source 
has to pay to its local Internet connectivity provider to get its traffic 
transported to the Internet. Transit costs usually depend on the number of 
megabits per second (Mbps) that a source transmits [Norton02b]. 

Sources also benefit from aggregators because they can off-load certain 
media processing tasks (e.g., transcoding) to them, which reduces the 
sources’ resource requirements and thus increases their scalability [Gao03]. 
A proxy could for instance free a source from transcoding a channel in 
HDTV quality down to a quality suitable for mobile hosts. Media processing 
operations like transcoding have been studied extensively in the literature 
(e.g., [Xu00, Amir95, Yeadon96, Balachandran97, Zenel97, Roy02]), but 
specific media processing operations are outside the scope of this thesis. 

Pros and Cons for Users 
Users benefit from the existence of aggregators when a source 
simultaneously distributes a channel via multiple aggregators (cf. [Roy02, 
Dutta02, Trossen03]). In this case, users might be able to receive that 
channel from more than one aggregator, which enables them to choose the 
aggregator they consider the ‘best’ one (e.g., the one that delivers the 
channel at the lowest price). This is in line with broader economical trends 
that provide users with ever more options (e.g., multiple power and telco 
providers). 

At the same time, the availability of multiple aggregators also requires 
users to actually deal with these aggregators, which is a task that might be 
difficult [Kleinrock03, Latvakosi02]. This problem may be exacerbated by 
roaming. For example, if a user is receiving a channel from an aggregator 
that is bound to a certain network, then that user will have to find another 
aggregator when he moves out of the network. A solution to this problem is 
a system that can automatically switch a mobile host to another aggregator 
while the user is receiving a channel. In Chapter 3, we will consider the 
design and implementation of the ALIVE system, which realizes such 
switches.  

Another advantage for users is that aggregators typically offer multiple 
channels, which enables users to get access to these channels by establishing 
an agreement with only a small number of aggregators (typically one). 
Without aggregators, users would have to set up an agreement with every 
source from which they would want to receive a channel. 
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Aggregators from an Internet Perspective 
There has been a lot of debate in the Internet engineering community (in 
particular in the IETF) about the use of intermediaries such as the 
aggregators we use in this thesis. The Internet Architecture Board (IAB) 
recently issued an RFC [Floyd02] in which they state that proxies are 
acceptable if their use is authorized by the content provider or the receiver 
of the content. This requirements holds in the ALIVE business network as 
users explicitly establish agreements with aggregators, which authorizes the 
use of that aggregator. In addition, content providers (our sources) also 
establish agreements with aggregators, which also authorizes the use of 
intermediaries (aggregators) from the content provider’s perspective. 

The IAB furthermore requires that intermediaries are explicitly 
addressed at the IP layer. As we will see in Chapter 3, this is indeed the case 
in the ALIVE system. 

2.2.3 Alternative Business Networks 

In general, users can set up an agreement with either sources or aggregators 
and can then also receive a channel from either a source or an aggregator. 
Figure 2-4 illustrates that this yields four types of distribution models: 

– An end-to-end model, in which users receive channels from sources 
and also have agreements with sources; 

– A Content Distribution Network (CDN) model, in which a mobile 
user has an agreement with a source (e.g., cnn.com), but receives 
channels through an aggregator that the source has contracted (cf. 
akamai.com). In this form of distribution, a mobile host sends a 
request for a channel to a source. The source forwards the request to 
an aggregator (the CDN), which routes the request [Cain03] to a 
media server that is ‘close’ to the user (e.g., http://nearest-
server.akamai.com/CO231234), possibly in a resource-aware 
manner [Xu00]. 

– A brokered model, in which a user sets up an agreement with an 
aggregator, but receives channels from a source.  In this case, the 
aggregator basically acts as a broker (cf. the Broker role in TINA 
[TINA97]) that merely enables users to look up channels from 
contracted sources, for instance using an Electronic Program Guide 
(EPG) on the user’s mobile host [Nomura03]; and 

– A portal model, in which a user receives a channel from an 
aggregator and also has an agreement with that aggregator. This is 
the model that forms the basis of the ALIVE business network’s 
organization (see Section 2.2.2).  
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Figure 2-5 shows an example of the end-to-end model (Figure 2-5a), the 
CDN model (Figure 2-5b), the portal model (Figure 2-5c and Figure 2-3), 
and the brokered model (Figure 2-5c). 
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Figure 2-4. Distribution 
types. 

Figure 2-5. Examples of 
distribution types: end-
to-end (a), CDN (b), 
portal (c), and brokered 
(d). 
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Observe that the three models that involve an aggregator can also describe 
the end-to-end model by co-locating a source and an aggregator (i.e., when 
a domain is both a source and an aggregator). This makes the end-to-end 
model a special case of the other three models. 

2.2.4 Configurations 

To maximize the number of potential receivers of a channel in a 
heterogeneous environment, the sources and aggregators in the ALIVE 
business network are able to transmit channels in various configurations. A 
configuration delivers a channel in a certain form, for instance in terms of 
perceptual quality (e.g., in terms of frame rate, pixels per frame, and colors 
per pixel), costs, and resource requirements (e.g., in terms of the 
processing capabilities that mobile hosts need to possess to receive a 
channel in a certain configuration). 

A configuration consists of set of multimedia streams with specific 
compression and packetization parameters (e.g., in terms of a codec type, a 
compression ratio, a sampling rate, and a packetization format) [Xu00, 
Plagemann03] and is parameterized by the channel (i.e., the logical content) 
the streams carry. As a result, we speak of a particular channel in a certain 
configuration. Examples are CNN Radio in a 64 kbps MP3 audio 
configuration, CNN Radio in a 32 kbps G722.1 audio configuration, and so 
on. The packets of a multimedia stream are typically formatted according to 
one of the profiles of the Real-time Transport Protocol (RTP) 
[Schulzrinne96a, Schulzrinne96b]. 

Supported Configurations 
Sources and aggregators each support their own configurations in which 
they can potentially deliver channels to receivers. We call these a source’s 
(aggregator’s) set of supported configurations: 

A supported configuration is a configuration in which a source or an aggregator 
can potentially deliver a channel to receivers. 

In the rest of this thesis, we assume that the supported configurations of 
aggregators are suitable for mobile hosts and wireless links (‘mobile-
friendly’ configurations), while this may be the case for the supported 
configurations of sources. If a source’s supported configurations are mobile 
friendly, then aggregators can simply reuse those configurations (i.e., the 
supported configurations of the source and aggregator overlap). 
Alternatively, aggregators could use a set of supported configurations that 
completely differs from those of a source, for instance because the source’s 
configurations are unsuitable for the typical processing capabilities of 
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mobile hosts. Notice that mobile friendly configurations typically provide a 
lower perceptual quality level than those that are not. 

As will see in Section 2.2.5, supported configurations form the 
foundation of the agreements in the ALIVE business network. 

Personalization 
We expect that the set of supported configurations of an aggregator 
(source) will be relatively small (e.g., in the order of 10 to 20), thus 
sampling the ‘configuration spectrum’ in a coarse way. The advantage of this 
approach is that it increases the scalability of aggregators (sources) because 
it limits the amount of per-user multimedia state (e.g., pointers to 
multimedia files, transcoders, and so on) they have to maintain. The 
downside is that users might receive a channel in a suboptimal configuration 
given their quality and price preferences and the capabilities of their mobile 
hosts. The network connection of a user could for instance provide some 
extra bandwidth, but not enough to receive a channel in the next higher 
configuration. The ALIVE business network thus strikes a balance between 
offering a channel in a single configuration for everyone and using (a large 
number of) configurations that are optimized for individual users and their 
mobile hosts (e.g., fine-tuned to their instantaneously available bandwidth). 

The above personalization problem also surfaces in the distribution of 
multimedia channels through IP multicast. The problem here is that it is 
difficult to multicast a multimedia channel in an optimal way to a 
heterogeneous set of receivers. Some receivers may for instance experience 
packet drops because they are sitting behind a (congested) link that cannot 
handle the channel’s bandwidth level. Other receivers may be able to 
receive the channel at a higher quality because they connect to the Internet 
through a high-capacity congestion-free link. This problem can be alleviated 
by using multiple multicast groups. Each multicast group could for instance 
carry one layer of a layered encoder and receivers would then dynamically 
add or drop layers by joining or leaving the appropriate multicast groups 
(e.g., [McCanne96, Wu97]). Alternatively, the multicast groups could form 
a hierarchy in which each multicast group distributes a channel at a specific 
bandwidth level [Kouvelas98], or sources could simulcast a channel at 
different bandwidth levels onto multiple multicast groups and then rely on 
receivers to switch between these groups [Cheung96]. 

Switching versus Adaptation 
When a user switches to receive a channel from another aggregator, it will 
typically also receive the channel in another configuration. Since aggregators 
usually sample the configuration spectrum in a course way (see 
Personalization), the target configuration might provide a significantly 
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different perceptual quality. We therefore consider switching a coarse-grained 
form of adaptation. 

Course-grained adaptation is complementary to fine-grained adaptation 
[Karrer01], which adapts the characteristics of an individual configuration. 
An aggregator can for instance reduce the bandwidth that a channel 
configuration requires by dropping video frames (e.g., [Yeadon96]). 

In this thesis, we will leave fine-grained adaptation up to native 
streaming technologies such as WindowsMedia and Real [Li02] and do not 
consider it any further. 

Configuration Categories 
To market their configurations, aggregators can package their supported 
configurations into groups, for instance based on the perceptual quality they 
provide, on the network bandwidth they require, or on the amount of 
battery power they require from receivers. In this thesis, we consider 
groups of configurations that provide a similar perceptual quality. We refer 
to them as quality categories. Quality categories are typically ordered [Xu00], 
but the specifics of such orderings are outside the scope of this thesis.  

Aggregators associate their categories with a user-oriented quality label 
(e.g., ‘CD’ quality audio or ‘TV’ quality video). These quality labels are used 
in agreements with users (see Section 2.2.5) and can also be used to 
provide feedback on the quality level of the configuration in which a user 
actually receives a channel. Quality labels can also be used in combination 
with a pricing model. Different aggregators typically use different quality 
labels. 

Configuration Definition 
In general, the properties of a configuration can be defined by a source, by 
an aggregator, or by a standardization body. Standardized configurations 
have the same properties (e.g., perceptual quality) across different sources 
and aggregators. The grouping of configurations and their ordering could 
also be subject of standardization. The way in which configurations are 
defined is however outside the scope of this thesis. 

2.2.5 Delivery, Roaming, and Forwarding Agreements 

As we have seen in Section 2.2.2, the distribution of channels to mobile 
hosts is governed by three types of agreements: agreements between users 
and aggregators, agreements between aggregators, and agreements between 
sources and aggregators. We refer to these three types of agreements as 
delivery agreements, (application-level) roaming agreements, and 
forwarding agreements, respectively. Each agreement typically comes with a 
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pricing model, but accounting is a topic that lies outside the scope of this 
thesis. 

Delivery and Forwarding Agreements 
Delivery and forwarding agreements contain descriptions of allowed 
configurations, which are supported configurations (see Section 2.2.4) in 
which a receiver (i.e., an aggregator or a user) is allowed to receive channels 
from a sender (i.e., a source or an aggregator). That is, 

An allowed configuration is a configuration in which a receiver (i.e., an aggregator 
or a user) can receive channels from a sender (i.e., a source or an aggregator). An 
allowed configuration must be a supported configuration of the sender and the 
allowed configuration’s description must appear in the agreement between the 
sender and the receiver. 

The actual description of an allowed configuration may for instance be in 
the form of its properties (e.g., its codec type, number of streams, and 
required bandwidth) or in the form of a label that identifies the quality 
category to which the configuration belongs (see Section 2.2.4). 

Figure 2-6 (part of Figure 2-3) shows an example of a delivery agreement 
between user Bob and aggregator media-forward.nl, as well as of delivery 
agreements between cnn.com and the two aggregators (media-forward.nl 
and stream-it.com). As we will see in Chapter 3, aggregators are responsible 
for controlling access to their configurations, which involves the 
authentication of users and mapping their identities to a set of allowed 
configurations (authorization). 
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The difference between a forwarding agreement and a delivery agreement is 
that a forwarding agreement also specifies how an aggregator should handle 

Figure 2-6. Multi-
aggregator distribution, 
including agreements. 
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a source’s channels. For example, a forwarding agreement could indicate if 
a source permits an aggregator to redistribute a channel in a configuration 
that differs from the one in which the aggregator receives the channel (e.g., 
by transcoding the original configuration to a low-bandwidth format), for 
instance using the MPEG-21 Rights Expression Language [Wang04]. In the 
rest of this thesis, we will however concentrate on the ‘front-end’ of the 
ALIVE business network (aggregators and users), which means that 
forwarding agreements are out of scope. 

Home and Foreign Aggregators 
From a user’s perspective, we distinguish home and foreign aggregators. A 
home aggregator is an aggregator with which a user has a delivery agreement, 
whereas a foreign aggregator is an aggregator with which a user does not have 
such an agreement. In the example of Figure 2-6, media-forward.nl is Bob’s 
home aggregator (marked with an ‘H’), while stream-it.com is a foreign 
aggregator (marked with an ‘F’). 

From an aggregator’s perspective we also distinguish foreign users, which 
are users that do not have a delivery agreement with the aggregator. 

Application-level Roaming Agreements 
The home aggregators in the ALIVE business network establish application-
level roaming agreements with foreign aggregators to enable their users to also 
receive channels via those foreign aggregators. For example, Bob’s home 
aggregator media-forward.nl has a roaming agreement with foreign 
aggregator stream-it.com (Figure 2-6) so that media-forward.nl’s users can 
also receive channels from stream-it.com. 

An application-level roaming agreement defines an equivalence 
relationship between the supported configurations of the home aggregator 
and those of the foreign aggregator. The equivalence relation may be based 
on factors such as bandwidth, cost, or perceptual quality. Figure 2-7 shows 
an example of an equivalence relation between the audio configurations of 
aggregators media-forward.nl and stream-it.com. It for instance specifies 
that 24 kbps G722.1 configuration of stream-it.com is equivalent to either 
of the two G722.1 configurations of media-forward.nl (e.g., because they 
provide about the same quality). 
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A delivery agreement and a roaming agreement together determine the set 
of configurations in which a user is allowed to receive configurations from a 
foreign aggregator. We therefore refer to this set as the user’s allowed foreign 
configurations. 

In the example of Figure 2-7, Bob’s delivery agreement with media-
forward.nl (his home aggregator) contains three allowed configurations. 
The roaming agreement with stream-it.com reduces this set to two 
configurations at stream-it.com, which are Bob’s allowed foreign 
configurations at that aggregator. 

Application-level roaming agreements are similar to network-level roaming 
agreements (e.g., [Markoulidakis97, 3GPP99]), but they only address 
application-level issues (i.e., equivalent configurations). Like a network-
level roaming agreement, an application-level roaming agreement does not 
include user-specific information. 

Multiple Sets of Allowed Configurations 
In general, the total set of allowed configurations in which a user can 
receive a channel may involve allowed configurations of different 
aggregators. For example, the total set of allowed configuration in which 
Bob can receive CNN TV (Figure 2-6) consists of allowed configurations of 
media-forward.nl and of the allowed foreign configurations of stream-
it.com. 

To actually deliver a channel to the user, it should somehow be possible 
to select a configuration from these different sets of allowed configurations 
in which the user will actually receive the channel. Figure 2-8 illustrates this. 

Figure 2-7. Example of a 
roaming agreement. 



22 CHAPTER 2 THE ALIVE BUSINESS NETWORK                                                

 

stream-it.com (F)

media-forward.nl (H)

bob

supported

supported

apply
roam

ing agreem
ent

thru delive
ry 

agreement

thru delivery + 

roaming agreement

allowed
foreign

allowed

set of configurationsset of configurations selectionselection  

As we will see in Chapter 3, the ALIVE system can automatically select an 
actual configuration for a particular user.  

2.3 Network-level Part: IP Connectivity 

The roles in the network-level part of the ALIVE business network provide 
end-to-end IP connectivity to sources, aggregators, and users. Their 
primary task is to transport IP packets from one Internet host to another. 

In this section, we first discuss the network-level roles of the ALIVE 
business network (Section 2.3.1) and take a look at how they are organized 
(Section 2.3.2). After that, we discuss the network-level agreements 
(Section 2.3.3). 

2.3.1 Access Providers and Backbone Providers 

At the network-level, we distinguish two roles: access providers and 
backbone providers. 

Access Provider 
An access provider operates at the fringes of the Internet and provides first-
hop IP connectivity to users, aggregators, and sources (cf. the model of 
[Rosenberg98]) at various bandwidth levels. Mobile users usually receive a 
channel via one access provider, which is typically a wireless one. In general, 

Figure 2-8. 
Configuration selection 
using multiple sets of 
allowed configurations 
at different aggregators. 
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a single access provider can operate different types of (wireless) access 
networks (e.g., 802.11, 802.16, or UMTS).  

To limit the complexity of the ALIVE business network, we only require 
access providers to deliver the standard best-effort packet delivery service. 
We do not require them to possess special features like the ability to 
provide Quality of Service (QoS) assurances [Xiao99] or to be able to 
handle mobility (e.g., using Mobile IP [Solomon98]). 

Backbone Provider 
A backbone provider offers IP-level connectivity to access providers. 
Backbone providers make up the Internet backbone and do not serve 
mobile users, sources, or aggregators. 

Scope 
Since the focus of our work is on the front-end of the ALIVE business 
network, we will not consider individual backbone providers in this thesis. 
Instead, we will group them together in one ‘Internet backbone’ cloud. 

2.3.2 Business Network 

At the network-level, the ALIVE business network consists of access 
providers that receive IP packets from the Internet backbone and deliver 
them the hosts of mobile users, or vice versa. Users need to set up an 
agreement with access providers to gain Internet access through one or 
more of those providers’ networks.   

Multiple Networks 
In general, mobile users may be able to connect to the Internet through 
multiple networks of multiple access providers. To remain connected to the 
Internet, some sort of handoff system needs to transfer mobile hosts to 
another network when they leave the coverage area of their current network 
(e.g., [Solomon98, Wedlund99, Seneviratne98, Pollini96, Pahlavan00, 
Tripathi98]). Roaming agreements between access providers facilitate these 
handoffs in that they enable users to make use of networks of different 
access providers while having a subscription (an agreement) with only a 
small number of access providers [Verhoosel03, Markoulidakis97, 3GPP99] 
(typically one). We will consider these network-level roaming agreements in 
more detail in Section 2.3.3. 

At certain locations, mobile hosts may be able to connect to multiple 
networks simultaneously. This typically happens when a mobile user resides 
in the coverage of two different types of networks (e.g., an 802.11 and a 
UMTS network). Such networks usually have an overlay relationship with 
each other, which means that one network also covers the coverage area of 
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the other [Stemm98, Brewer98]. To date, overlays typically involve a 
UMTS network (the overlaying network) and an 802.11 ‘hotspot’ (the 
overlayed network) [Køien03, Banerjee04, Zhuang03]. 

Figure 2-9 shows an example of an overlay situation combined with the 
example aggregator infrastructure of Figure 2-6. In this specific example, 
Bob’s mobile host can simultaneously connect to the 802.11 network of 
hotspot.nl and to the UMTS network of connect-it.nl as long as Bob is 
within the range of the 802.11 network. Figure 2-9 does not show the 
access providers that the sources and the aggregators use to connect to the 
Internet, nor does it show the interconnecting backbone providers.  
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Multiple Aggregators, Multiple Networks 
The availability of multiple networks not only enables users to receive a 
channel via multiple alternative aggregators, but also through multiple 
alternative networks. As we will see in Chapter 3, the ALIVE system is able 
to automatically switch between aggregators and handoff between networks. 

2.3.3 Connectivity and Roaming Agreements 

The agreements at the network-level are largely similar to those at the 
application-level, except that they contain network-level information. In 
this section, we only consider agreements between users and access 
providers and agreements between access providers. We refer to them as 
connectivity agreements and (network-level) roaming agreements, 
respectively. The agreements between sources and access providers, 
between aggregators and access providers, and between access providers 

Figure 2-9. Instance of 
the ALIVE business 
network with access 
providers and backbone 
providers.  
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and backbone providers are outside the scope of this thesis. We also do not 
consider the pricing models that can be associated with the agreements. 

Connectivity Agreements 
A connectivity agreement between a user and an access provider allows the user 
to send/receive IP packets to/from the access provider. It specifies which of 
an access provider’s networks a user can access and which bandwidth levels 
(upstream and downstream) that are available to that user on each of these 
networks. We refer to the networks that appear in a connectivity agreement 
as the user’s allowed networks for that specific access provider (e.g., Bob 
could have a connectivity agreement with connect-it.nl that specifies that 
the UMTS network is an allowed network). Similarly, we call the bandwidth 
levels in such an agreement the user’s allowed bandwidth levels.  

The set of allowed networks is a subset of an access provider’s set of 
supported networks, while the set of allowed bandwidth levels is a subset of 
an aggregator’s set of supported bandwidth levels. (Notice the similarity 
with supported and allowed configurations at the application level.) The set 
of supported bandwidth levels could for instance contain up to 31 multiples 
of 64 kbps (cf. traditional ISDN networks), while the maximum allowed 
bandwidth level for a particular user is only 128 kbps. 

Home and Foreign Access Providers 
A user typically establishes a connectivity agreement with one access 
provider. We refer to this access providers as the user’s home access provider. 
All other access providers are foreign access providers. 

Roaming Agreements 
A home access provider establishes roaming agreements with foreign access 
providers to give its users access to the networks of the foreign access 
providers. For example, if connect-it.nl is Bob’s home access provider, then 
a roaming agreement between connect-you.nl and hotspot.nl would also 
give Bob access to hotspot.nl’s 802.11 network. 

A roaming agreement defines a mapping between the supported 
networks and supported bandwidth levels of two access providers. For 
example, the roaming agreement between connect-you.nl and hotspot.nl 
could specify that the 64/16 kbps (downstream/upstream) supported 
bandwidth level of media-forward.nl  maps to the 512/64 kbps supported 
bandwidth level of hotspot.nl. 

The allowed bandwidth levels that a user can receive from a foreign 
aggregator depends on the user’s connectivity agreement and the roaming 
agreement between the foreign access provider and his home access 
provider. (Notice the similarity with the delivery and roaming agreements at 
the application level.) 
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2.4 Cross-Level Part: Scoped Content Distribution 

The cross-level part of the ALIVE business network defines an optional 
binding between the application-level and network-level parts. This binding 
is established by means of agreements between aggregators and access 
providers. 

We first discuss the roles associated with the cross-level part (Section 
2.4.1) and then discuss the binding agreements (Section 2.4.2). 

2.4.1 Local and Global Aggregators 

The cross-level part specializes aggregators into global and local aggregators. 
A local aggregator is an aggregator whose service area is restricted to a 
number of networks. This means that a user can only receive channels from 
a local aggregator (in certain allowed configurations) if his mobile host 
attaches to one of the networks that belong to the aggregator’s service area. 
A user has to switch to another aggregator if he receives a channel from a 
local aggregator and leaves that aggregator’s service area. In general, the 
service area of a local aggregator may involve networks of different access 
providers. 

Contrary to a local aggregator, a global aggregator is available in the entire 
Internet. 

Figure 2-10 (an extension of the example of Figure 2-9) shows stream-
it.com as a local aggregator (marked with an ‘L’). Its service area is 
restricted to the 802.11 network of hotspot.nl. Media-forward.nl is a global 
aggregator (marked with a ‘G’) and is therefore available in the 802.11 
network as well as in the UMTS network. 
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global and local 
aggregators. 
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2.4.2 Binding Agreements 

An aggregator and an access provider set up a binding agreement to define for 
which of the access provider’s networks the aggregator acts as a local 
aggregator. As a result of the agreement, the involved aggregator’s channels 
and configurations are only accessible through the networks listed in the 
agreement. The agreement between stream-it.com and hotspot.nl (Figure 2-
10) is an example of a binding agreement. It lists in which networks of 
hotspot.nl stream-it.com acts as a local aggregator. In the example, this is 
hotspot.nl’s 802.11 network. 

An example of a practical situation in which binding agreements were 
used is in the distribution of live broadcasts of the 2004 Olympic Games 
over the Internet [Wired04]. In this particular case, the International 
Olympic Committee (IOC) acted as the content source, national 
broadcasting companies as aggregators, and ISPs as access providers. The 
need for binding agreements arose when the IOC required the broadcasting 
companies to ensure that (some of) the Olympic Games’ content would 
only be delivered to receivers in the broadcasting companies’ home 
countries (e.g., in the UK for the BBC). To accomplish this, the 
broadcasting companies set up binding agreements with ISPs that were 
known to only serve that type of users. 

Besides networks, a binding agreement can for instance contain the type 
of transport that an aggregator has to use to deliver channels via the access 
provider’s networks and the access provider’s long-term traffic statistics 
(e.g., the typical traffic load at a certain time of day). 

2.5 Related Work 

Business networks for the distribution of multimedia channels already exist 
[Vernick01, TINA97, DOLMEN98], but as far as we know none of them 
enable users to switch between different aggregators and receive channels in 
different configurations. In addition, the systems that are similar to the 
ALIVE system (e.g., [Dutta02, Trossen03, Roy02]) are often not based on a 
particular business network. Even if they are, the business network does not 
cover the agreements between the roles in the network. We refer to Section 
3.8 for a detailed discussion on the differences between our business 
network and the ones used by systems similar to the ALIVE system. 
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2.6 Summary 

The ALIVE business model describes the possible relations that can exist 
between domains that are involved in the distribution of multimedia 
channels. The key characteristic of the business model is that it allows 
content sources to distribute the same channel via multiple aggregators. 
This enables mobile users to receive the same channel from multiple 
alternative aggregators, which increases the users’ flexibility. At the same 
time, the use of aggregators also offers scalability and cost advantages to 
content sources. The costs of using (multiple) aggregators is that they 
increase the complexity of the Internet infrastructure. 

The users in the ALIVE business model typically set up a delivery 
agreement (a subscription) with one aggregator, which frees them from 
having to establish agreements with potentially many individual sources. 
The distinctive agreement in the ALIVE business model is an application-
level roaming agreement, which is an agreement that aggregators establish 
amongst each other to enable users to get access to multiple aggregators. 
The aggregator with which a user established a delivery agreement is that 
user’s home aggregator, while all other aggregators are foreign aggregators. 

The aggregators in the ALIVE business network offer channels in 
multiple configurations to serve different types of mobile hosts over 
different types of networks. The configurations that an aggregator supports 
typically provide different perceptual qualities and require different 
amounts of resources (e.g., network bandwidth). The configurations in the 
ALIVE business network typically sample the ‘configuration spectrum’ in a 
course way, thus striking a balance between a one-configuration-for-all and 
individual per-user configurations (e.g., fine-tuned to the user’s 
instantaneously available bandwidth). 

A delivery agreement defines in which configurations a user is allowed to 
receive channels from his home aggregator. We call these configurations a 
user’s allowed configurations. Roaming agreements define in which 
configurations a user can receive channels from foreign aggregators, which 
may differ from the configurations of the user’s home aggregator. As a 
result, a user’s set of allowed configurations can differ from aggregator to 
aggregator. 

The application and network-level parts of the ALIVE business network 
are largely independent of each other, except when an aggregator is linked 
to an access provider through a binding agreement. A mobile host that 
receives a channel through a local aggregator must switch to another 
aggregator when it leaves its current aggregator’s service area. 

In the rest of this thesis, we concentrate on the ‘front-end’ of the ALIVE 
business network, in particular on its application-level part (i.e., aggregators 
and users). We furthermore focus on the signaling interactions between 
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mobile hosts and aggregators and do not consider the specifics of the 
multimedia content itself (e.g., in terms of packet forwarding, compression, 
and packetization mechanisms).





 

Chapter 3 

3. The ALIVE System3 

This chapter discusses the design of the ALIVE system. The system’s key feature is 
its ability to dynamically switch a mobile host to the aggregator that provides a 
particular channel in the best configuration. The ALIVE system can execute these 
switches automatically, thus hiding the complexity of the aggregator and network 
infrastructure from end-users. 

The ALIVE system is designed with scalability in mind because it has to be capable 
of serving a large number of mobile receivers. This for instance means that the design 
puts a large part of the system’s intelligence on mobile hosts, which is in line with 
current Internet design principles. The ALIVE system includes an application-level 
protocol, which we implemented using the Session Initiation Protocol (SIP) and the 
Session Description Protocol (SDP). 

Before delving into the details, we first provide an overview of the ALIVE system 
(Section 3.1). After that, we consider the system’s architecture (Section 3.2), its end-
to-end interactions (Section 3.3), and internal organization (Section 3.4). Next, we 
take a look at the policies used by mobile hosts to take switching decisions (Section 
3.5) and consider the ALIVE protocol (Section 3.6) and its implementation (Section 
3.7). We conclude this chapter with a comparison of the ALIVE system with similar 
systems (Section 3.8). 

3.1 Overview 

This section provides an overview of the ALIVE system. We discuss the 
system’s goal (Section 3.1.1) and the ways in which it should be able to 
move mobile hosts between aggregators (Section 3.1.2). Next, we consider 
the capabilities the system requires to automatically execute switches 
(Section 3.1.3), and the non-functional properties it needs to possess 
(Section 3.1.4). 

                                                       
3 This chapter is based on [Hesselman03], [Hesselman05], and [Kamilova05]. 
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3.1.1 Goal of the ALIVE System 

The goal of the ALIVE system is to dynamically exploit the availability of 
multiple alternative content aggregators in a user-friendly manner. To 
accomplish this, the ALIVE system automatically switches mobile hosts to the 
aggregator that provides a channel in the best configuration (e.g., the one 
that provides the highest quality at a certain price) while they receive that 
channel. As a result, mobile hosts alternately receive a channel from 
different aggregators in different configurations (e.g., [Dutta02, Roy02, 
Trossen03]). In this thesis, the meaning of the ‘best configuration’ is 
defined by the end-user (e.g., [Kamilova05, Wang99]), who could for 
instance consider the aggregator that provides the cheapest configuration of 
a channel the best one.  

Example 
Figure 3-1 shows an example in which the ALIVE system switches Bob’s 
mobile host to another aggregator while receiving channel CNN TV (the 
example is an extension of Figure 2-11). 
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Bob’s mobile host initially receives CNN TV from media-forward.nl via the 
UMTS network of connect-it.nl (as of point A). However, when Bob roams 
into the 802.11 network of hotspot.nl, the ALIVE system discovers that 
stream-it.com can deliver CNN TV in a better configuration (e.g., because 
Bob prefers its high quality configurations over those of media-forward.nl) 
and therefore switches Bob’s mobile host to stream-it.com. As a result, Bob 
receives CNN TV in one of stream-it.com’s configurations from that point 
on. Since stream-it.com is only available in the 802.11 network, Bob’s 
mobile host will receive CNN TV via its 802.11 interface. For the same 

Figure 3-1. Roaming 
scenario. 
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reason, the ALIVE system switches the mobile host back to media-
forward.nl when Bob leaves the hotspot (point C). 

3.1.2 Switches and Handoffs 

As a result of the split-level business network of Chapter 2, the ALIVE 
system must be able to independently switch a mobile host to another 
aggregator or transfer it to another network. In this thesis, we reserve the 
word switch(ing) for a change of aggregator, while we use the term handoff 
for a change of network. 

Switches 
A switch from one aggregator to another requires the ALIVE system to 
establish a streaming session with a media server of the target aggregator 
and release the session with the current media server: 

A switch between aggregators consists of the establishment of a streaming session 
with a media server of the target aggregator and the release of the streaming 
session with the current media server of the current aggregator.  

In this definition, a session is an application-level streaming association 
between a mobile host and a media server in which the media server 
streams multimedia packets to the mobile host. 

A switch between aggregators may involve the transfer of application-
level context information (e.g., the state of a predictive encoder) between 
the aggregators’ media servers [Roy02, Trossen03], but this topic is outside 
the scope of this thesis. 

Switching Types 
In general, the target aggregator of a switch can be another aggregator or 
the aggregator from which the mobile host is already receiving a channel. 
We refer to these switching types as inter-aggregator and intra-aggregator, 
respectively. For intra-aggregator switches, we also distinguish inter-server 
and intra-server switches. In the latter case, a mobile host switches to the 
same media server of the same aggregator to receive a channel in another 
configuration. This situation is comparable to standard end-to-end mobility 
handling (e.g., using Mobile IP [Solomon98] or SIP [Wedlund99]) because 
the mobile host only has to inform the media server of the mobile host’s 
new IP address. 

The ALIVE system should support all three types of switches, preferably 
using the same mechanisms to keep the system as simple as possible. Our 
examples will however focus on inter-aggregator switches. 
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Handoffs 
The ALIVE system hands a mobile host off to another network by 
connecting it to one base station (e.g., an 802.11 base station) and 
disconnecting it from another: 

A handoff between networks consists of the establishment of a connection with a 
target base station and the release of a connection with the current base station. A 
handoff includes the establishment of IP connectivity, if necessary. 

A connection in this case is an IP-level association between a mobile host 
and the Internet. 

Handoff Types 
If the target base station of a handoff belongs to another network, the 
mobile host will need to use another IP address to communicate via that 
base station. A handoff to a base station of another network is usually 
referred to as macro mobility, while handoffs between base stations that 
belong to the same network are referred to as micro mobility [Campbell00]. 
Figure 3-2 shows how these handoff types can be combined with the 
different types of switches. 

handoff to
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the same 
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same server 
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Handoffs can be further categorized in inter-tech handoffs and intra-tech 
handoffs. A handoff is called an inter-tech handoff if the target base station 
uses a different link-level protocol (a network technology) than the current 
one [Brewer98, Stemm98, Hesselman01]. For example, a handoff from a 
UMTS base station to an 802.11 base station is an inter-tech handoff. An 
intra-tech handoff, on the other hand, involves two base stations that use 
the same link-level protocol. Inter-tech handoffs usually require a mobile 
host to use another IP address on the target network (macro mobility). 

In this thesis, we relax the definition of an inter-tech handoff by not 
requiring the ALIVE system to disconnect a mobile host from its current 

Figure 3-2. Switching 
and handoff types. 
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base station. This enables mobile hosts to connect to multiple networks 
simultaneously (e.g., to the UMTS network and the 802.11 network of 
Figure 3-1), thus allowing them to exploit the availability of aggregators on 
multiple networks. 

Finally, the target base station in a handoff can belong to the same 
access provider as the current one, or it can belong to another access 
provider. Inter-access provider handoffs typically require a change of IP 
address at the mobile host (macro mobility). 

Macro mobility can be handled at the IP-level by protocols such as 
Mobile IP [Solomon98] or one its derivatives (e.g., [Tan99, Helmy00]), at 
the transport level [Snoeren00, Maltz98], at the ‘session level’ 
[Landfeldt99, Snoeren01], or at the application level [Wedlung99, Liao99]. 
Micro mobility can be handled at the level of a specific network technology 
(e.g., 802.11 or GPRS) or at the IP-level [Ramjee99, Campbell00]. Specific 
mobility handling mechanisms are however outside the scope of this thesis. 

3.1.3 Automatic Switching 

The ALIVE system must be able to automatically execute switches and 
handoffs so that users do not have to deal with the different aggregators and 
access providers they encounter [Kleinrock03, Latvakosi02]. The example 
of Figure 3-1 illustrates that this requires the ALIVE system to be able to 
automatically go through five high-level steps: 
1. Detect events (e.g., the appearance of a new 802.11 network); 
2. Decide if a particular event might require a switch; 
3. If this is the case, discover in which configurations a user can potentially 

receive a channel (e.g., CNN TV) from which aggregators; 
4. Decide which configuration is the best one based on the user’s 

preferences; and 
5. Actually execute the switch. 
Figure 3-3 summarizes this basic behavior as a finite state machine. 
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Detecting Events 
The ALIVE system executes switches in reaction to changes in the mobile 
host’s environment. This means that the ALIVE system has to be able to 
detect events that signal such changes. Examples of events are the 
(dis)appearance of a network (e.g., an 802.11 network), a change in the 
available battery power of a mobile host, and a user changing his 
preferences (e.g., from ‘lowest price first’ to ‘highest quality first’). 

Discovery Decisions 
The decision to initiate discovery as a result of a change event generally 
depends on various factors. For example, if the user prefers cheap 
configurations, then the availability of a more expensive configuration at an 
aggregator will typically not make the ALIVE system decide to initiate 
discovery. However, if the battery power of the mobile host drops to a 
critical level, then the ALIVE system might decide to initiate discovery to 
quickly find an available configuration that requires less battery power. 

Configuration Discovery 
In an environment with multiple alternative aggregators, the ALIVE system 
has to be able to discover in which configurations a user can receive a 
certain channel from which aggregators. Since aggregators are access-
controlled, the ALIVE system must be able to (1) authenticate users to 
check if they have access to a certain aggregator, and (2) authorize these 
users to receive a channel in certain configurations. As we have seen in 
Section 2.2.5, we refer to these configurations as a user’s allowed (foreign) 
configurations. In general, a user’s set of allowed configurations depends on a 

Figure 3-3. High-level 
behavior of the ALIVE 
system as a finite state 
machine. 
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delivery agreement and on any roaming agreements with the user’s home 
aggregator (see Section 2.2.5). Authentication and authorization typically 
also involves accounting [Calhoun03], but we will not consider accounting 
in this thesis. 

To determine which allowed configurations are actually available to a 
particular user, the ALIVE system also needs to check for available 
resources (e.g., the battery power of mobile hosts and the processing load 
on media servers). We call these a user’s available configurations (for a certain 
aggregator and channel): 

An available configuration is an allowed configuration in which a user can actually 
receive a particular channel from a certain aggregator. 

Similar to allowed configurations, the total set of available configurations of 
a particular user can consist of multiple sets of available configurations of 
multiple aggregators (see Section 2.2.5). Figure 3-4 illustrates this. The 
circles in Figure 3-4 represent sets of configurations at the two aggregators 
of Figure 3-1.  
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As for available bandwidth, the ALIVE system only checks the maximum 
MAC level capacity (e.g., 11, 5.5, 2, or 1 Mbps for 802.11b networks) and 
does not measure the instantaneously available bandwidth. This limits the 
complexity of the system, but implies that the ALIVE system as a whole 
provides a best-effort service. 

Observe that the ALIVE system may need to execute a handoff to 
discover available configurations on a network that the mobile host 
currently does not connect to. For example, if Bob were to roam from the 
802.11 network of hotspot.nl into the 802.11 network of another provider, 
the ALIVE system would first need to execute a handoff on the 802.11 
interface of Bob’s mobile host before it can discover available configurations 
on the target network. In a situation like this, the ALIVE system also needs 
to discover the available local aggregators on the target network and perhaps 
discover their capabilities (e.g., if they automatically report the availability 
of new configurations). 

In the future, software radios [Moessner02] might make handoffs during 
configuration discovery unnecessary. The ALIVE system could for instance 
use one of a mobile host’s physical interfaces to continuously discover 
available configurations on different types of networks, while at the same 
time using another physical interface to actually receive a channel. This 
would enable the ALIVE system to discover configurations ‘in the 
background’ and only execute handoffs as a result of an actual switch. The 
use of software radios is however outside the scope of this thesis. 

Switching Decisions 
The ALIVE system has to decide (1) which aggregator can deliver a channel 
in the best available configuration, (2) which of that aggregator’s media 
servers will deliver the channel in that configuration, and (3) how the switch 
needs to be executed (e.g., in a make-before-break manner by first 
establishing a streaming session with one of the target aggregator’s media 
servers and then tearing down the session with the media server of the 
current aggregator).  

Another requirement is that users and other stakeholders (e.g., the 
owner of the mobile host or its manufacturer) should be able to flexibly 
change the rules based on which the ALIVE system makes discovery and 
switching decisions. It should be possible to change these rules while the 
system is in operation, so that the entire system can remain ‘always on’. For 
example, being able to change the ALIVE system’s switching rules enables 
mobile users to change their preferences. It also allows the owner of a pool 
of mobile hosts to control the resources these hosts consume for aggregator 
switching (e.g., by not allowing the ALIVE system to execute switches in a 
make-before-break manner, which is usually more expensive because it uses 
more resources). 
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In this thesis, we concentrate on the discovery and switching rules that 
define the behavior of mobile hosts and aggregators. We do not consider 
the rules that define the operation of access providers (e.g., when they 
admit users to their networks).  

Executing a Switch 
Switches in the ALIVE system can take place in two ways: in a make-before-
break manner or in a break-before-maker manner. In a make-before-break 
switch, the ALIVE system first establishes a multimedia streaming session 
between the mobile host and the target media server of the target 
aggregator, and then releases the session between the mobile host and the 
current media server. This is similar to make-before-break handoffs in 
mobile networks, which for instance occur in overlay situations [Stemm98, 
Brewer98, Hesselman01]. In a break-before-make switch, the ALIVE 
system first releases the session with the current media server and then 
establishes the session with the target media server. Break-before-make 
handoffs for instance occur in 802.11 networks [DeCleyn04]. 

The result of a switch is that a mobile host receives a channel in the best 
available configuration, possibly via another network than before the switch 
(cf. the example of Figure 3-1). We call this available configuration the 
actual configuration: 

An actual configuration is the best available configuration and is the configuration 
in which a mobile host actually receives a particular channel. 

Initial and Final Switches 
To begin the playout of a particular channel at a mobile host, the ALIVE 
system has to perform an initial switch, which is a switch from a ‘null’ 
aggregator to an initial target aggregator. Similarly, to terminate a channel 
the ALIVE system needs to switch a host from its current aggregator to a 
‘null’ target aggregator. In this thesis, we will however not consider these 
switches. Instead, we will assume that a mobile host is already receiving a 
channel before a switch and will continue to do so after the switch. 
Applications like Electronic Program Guides (cf. the Mbone tool sdr 
[SDR]) that enable a user to select a channel are therefore outside the 
scope of this thesis as well. 

3.1.4 Non-Functional Requirements 

The design of the ALIVE system is based on three non-functional 
requirements:  
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– The system should be able to switch a mobile host to another 
aggregator before the mobile host runs out of multimedia packets to 
render. As a result, switches will take place in a smooth manner (i.e., 
without glitches), thus hiding them from the user. To achieve this 
goal, the ALIVE should for instance perform certain tasks in parallel, 
for example the discovery of available configurations on different 
networks and the discovery of new aggregators on these networks; 

– The system should minimize the amount of control information 
transferred to and from mobile host to save bandwidth, which is 
generally scarce in a wireless environment; and 

– The system should be scalable. In our work, scalable means that the 
amount of inter-aggregator traffic and the authentication load on 
home aggregators should be minimized (cf. [Rosenberg98]). 
Following Internet design principles [Saltzer84, Clark88], it also 
means that aggregators should maintain the minimum possible 
amount of state. As a result, a large part of the system’s intelligence 
will reside on mobile hosts. 

3.2 ALIVE Architecture 

Figure 3-5 shows the high-level architecture of the ALIVE system 
superimposed on the example of Figure 3-1. The architecture’s main 
functional components are switching controllers on mobile hosts, signaling 
front-ends at aggregators, and aggregator directories at access providers. Note 
that Figure 3-5 represents access providers as IP clouds rather than radio 
coverage areas (cf. Figure 3-1). 
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Figure 3-5. High-level 
system architecture 
superimposed on the 
example of Figure 3-1. 
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The rest of this section provides an overview of the ALIVE system 
architecture. We first consider the architectures of mobile hosts (Section 
3.2.1), aggregators (Section 3.2.2), and access providers (Section 3.2.3). 
After that, we take a look at the signaling associations between the switching 
controllers of mobile hosts, the front-ends of aggregators, and the 
aggregator directories of access providers (Section 3.2.4). The interactions 
that take place on these signaling associations are the subject of Section 3.3. 

3.2.1 Host Architecture 

Figure 3-6 shows the architecture of the mobile hosts in the ALIVE system. 
The host’s switching controller is the center of the architecture. Switching 
controllers typically interact with multiple front-ends (Section 3.2.2) and 
multiple aggregator directories (Section 3.2.3).  
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Switching Controller 
In the ALIVE system, most of the responsibilities for automatic switching 
lie with the switching controllers, which means that they go through the five 
high-level steps of Section 3.1.3. As a result, the switches in the ALIVE 
system are mobile-controlled (cf. mobile-controlled handoffs between 
networks [Tripathi98]). The advantage of mobile-controlled switching is 
that it moves most of the system logic to the mobile host, which is in line 
with current Internet design principles [Clark88, Saltzer84]. The mobile 
host is furthermore a natural place to control switches because it is typically 
aware of the aggregators it can reach from a particular location. An 
alternative approach is to off-load parts of the switching controller’s 
functions to aggregators. For example, the part of the switching controller 

Figure 3-6. Architecture 
of mobile hosts in the 
ALIVE system. 
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responsible for making switching decisions (e.g., when to discovery available 
configurations and which aggregator will provide the actual configuration) 
could be located at an aggregator, while the rest of an switching controller’s 
functions could remain at the mobile host (cf. network-assisted handoffs 
[Tripathi98]). This approach requires the switching controller to upload 
certain information that allows the aggregator to make these decisions, such 
as the available processing power on the mobile host, and available codecs 
and session control protocols [Xu00]. Such an approach may be 
advantageous for resource constrained mobile hosts, but it requires 
aggregators to deal with switches for a potentially large number of mobile 
hosts. In addition, it may be difficult to have a single front-end decide on an 
actual configuration in an environment with multiple aggregators. 

Observe that a switching controller is a cross-layer component because it 
is responsible for executing switches (at the application-level) and for 
executing handoffs (at the network-level). 

Information Sources 
A switching controller uses several information sources to detect changes in 
the mobile host’s environment (e.g., the availability of a new network on a 
certain interface) and to make decisions (e.g., to decide which available 
configuration a user prefers). In this thesis, we distinguish five information 
sources: 

– A local resource manager, which keeps track of the available local 
resources on the mobile host (e.g., battery power and available 
codecs); 

– A preferences manager, which manages the user’s preferences (e.g., 
regarding quality and costs); 

– Network interfaces (e.g., 802.11 and UMTS interfaces) through which 
the switching controller interacts with front-ends and through which 
the mobile host actually receives a channel. A network interface also 
keeps track of information such as the networks currently available 
on an interface, their signal strengths, and so on; 

– Front-ends (remote sources), which enable the switching controller to 
discover the available configurations in which a user can receive a 
particular channel (see Section 3.2.2); and 

– Aggregator directories (remote sources), which enable switching 
controllers to discover which local aggregators are available through a 
certain network (see 3.2.3). 

In general, the switching controller can regularly poll these components for 
changes or it can wait for them to push such changes to it. For example, a 
switching controller can actively poll a front-end for it available 
configurations, or it can simply wait for the front-end to generate a 
notification that signals a change (through a configuration notification 
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message). Of course, the latter requires front-ends to have the capability to 
generate configuration notifications. 

In this thesis, we only use the information provided by the local resource 
manager, the preferences manager, and the network interfaces. We do not 
consider the internals of these components. 

Multimedia Components 
The other components on a mobile host deal with multimedia streams: 

– A multimedia player that depacketizes, decompresses, and renders the 
multimedia information in a multimedia stream. The player also 
provides an interface to the user than enables him to control the 
playout of a channel (e.g., pause, stop, change quality); and 

– A playout buffer. The playout buffer receives multimedia packets from 
the network and temporarily stores them to ensure that it can 
continue to feed information to the player when the packets of a 
multimedia stream are lost [Karrer01] or delayed [Li02]. Since the 
ALIVE system is about one-way streaming, the delay buffer can be 
quite deep (e.g., approximately 45 seconds for RealPlayer [Li02]). 
The buffer typically stores RTP packets [Schulzrinne96a]. 

The details of the player and the playout buffer are outside the scope of 
this thesis. 

3.2.2 Aggregator Architecture 

Figure 3-7 shows the architecture of an aggregator. The main component is 
a front-end. A front-end typically interacts with multiple switching 
controllers.  

front-endfront-end

users

switching 
controller  

Front-end 
The main task of a front-end is to enable switching controllers to discover a 
user’s available configurations for a particular channel. To accomplish this, a 
front-end’s task in the ALIVE system is to: 

– Authenticate mobile users; 
– Authorize a user to receive a channel in a certain set of allowed 

configurations (see Section 2.2.5). For foreign users, this is the set of 
allowed foreign configurations, which is based on the user’s delivery 

Figure 3-7. Architecture 
of aggregators in the 
ALIVE system. 
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agreement with his home aggregator and the roaming agreement 
between the home and the foreign aggregator; 

– Decide which of a user’s allowed configurations are actually available. 
This for instance depends on the available resources on the 
aggregator’s media servers and on the policies of the aggregator (e.g., 
e.g., a policy that limits the availability of high-end configurations to 
off-rush hour periods); and 

– Decide on a set of media servers from which the aggregator can 
deliver a channel in an available configuration. 

Centralized versus Distributed Front-ends 
The ALIVE system uses centralized front-ends. The advantage of this 
approach is that mobile hosts can get the information they need from an 
aggregator at a single point, which reduces the number of interactions 
between mobile hosts and aggregators. The disadvantage is that the front-
end might form a single point of failure and that it can potentially become 
an aggregator’s bottleneck if it is not dimensioned well (e.g., if it is not 
replicated across multiple machines). 

An alternative approach is to distribute a front-end across multiple 
machines. In the most extreme case, a front-end could be fully distributed 
across an aggregator’s media servers without any inter-media server 
synchronization (cf. [Amir98]). In a unicast environment, this would mean 
that a mobile hosts might need to communicate with many front-ends, 
especially when the host can reach multiple aggregators from its current 
location. This results in increased bandwidth consumption because mobile 
hosts need to send out more requests and because different front-ends of 
the same aggregator may report the availability of the same configuration. 
Another problem with this approach is that different front-ends might 
attempt to authenticate the same foreign user, which would increase the 
load on home aggregators and would decrease scalability.  

A fully distributed approach might be more viable in an IP multicast 
environment. In that case, a mobile host could for instance use an 
aggregator-specific multicast group to simultaneously interact with multiple 
front-ends of the same aggregator. A technique like multicast damping 
[Amir98] could then suppress duplicate responses from front-ends that 
include the same available configuration. IP multicast does however not 
match the user-specific nature of a user’s set of available configurations and 
is not very widespread at this point [Chennikara02]. 

3.2.3 Access Provider Architecture 

The most relevant component of an access provider for the ALIVE system is 
the aggregator directory. An aggregator directory enables switching 
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controllers to discover which local aggregators they can reach through a 
certain access provider. All access providers that have a binding agreement 
with one or more aggregators (see Section 2.4.2) operate an aggregator 
directory. 

3.2.4 Signaling Associations 

The ALIVE system involves several signaling associations (see Figure 3-5). A 
switching controller has signaling associations with front-ends, media 
servers, and aggregator directories, while front-ends are also involved in 
signaling associations with other front-ends. 

Switching Controllers – Front-ends 
The purpose of the signaling association between a switching controller and 
a front-end is to enable the switching controller to retrieve a description of 
the available configurations in which a user can receive a channel. The 
signaling association also allows the switching controller to authenticate a 
user with the front-end and to retrieve a description of the front-end’s 
capabilities. We refer to Section 3.3 for a discussion on the interactions that 
take place on this signaling association. 

Switching Controllers – Media Servers 
The purpose of the signaling associations between switching controllers and 
media servers is to execute a switch. The signaling association enables 
switching controllers to establish a streaming session with a media server of 
the target aggregator and to release the streaming session with the current 
media server (see Section 3.1.2). 

The advantage of direct signaling paths between switching controllers 
and media servers is that it simplifies front-ends. For example, front-ends 
do not need to act as proxies that establish or release a multimedia session 
between a media server and a mobile host on behalf of the switching 
controller. This would require front-ends to be more intelligent, which goes 
against the design goals of Section 3.1.4. 

However, turning front-ends into signaling proxies enables a front-end 
to act as a signaling gateway, for instance by translating SIP and 
WindowsMedia messages from mobile hosts into RTSP messages that the 
media servers require. This will enable aggregators to serve a heterogeneous 
population of mobile hosts with a homogeneous pool of servers. This is also 
the disadvantage of the direct signaling paths between switching controllers 
and media servers in the ALIVE system: it requires aggregators to operate a 
heterogeneous pool of media servers (e.g., with RTSP, SIP, Real, and 
WindowsMedia servers) to be able to serve different types of mobile hosts, 
some of which might only be able to deal with one type of media server. 
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We refer to Section 3.3 for a discussion on the interactions that take 
place on the signaling associations between switching controllers and media 
servers. 

Switching Controllers – Aggregator Directories 
The goal of the signaling association between a switching controller and an 
aggregator directory is to enable the switching controller to discover the 
local aggregators that are available through a certain network. The result 
typically consists of a set of URIs that point to the front-ends of the local 
aggregators. 

In this thesis, we assume that the interactions on this signaling 
association take the form of DHCP messages [Droms99, Vatn98] and that 
aggregator directories use a DHCP option to convey the URIs of local 
aggregators to the switching controller (e.g., using the DHCP option for 
SIP URIs [Schulzrinne02]). Alternative protocols that can be used are the 
Service Location Protocol (SLP) [Guttman99] or the telephony gateway 
location protocol discussed in [Rosenberg98]. 

Front-ends – Front-ends 
The purpose of the associations between front-ends is to enable aggregators 
to authenticate foreign users with their home aggregators. Two front-ends 
establish a signaling association when there exists a roaming agreement 
between the two aggregators (cf. the signaling links between federated 
UMTS domains [3GPP99]). The front-end of the foreign aggregator uses 
the association to authenticate foreign users at their home aggregator and to 
retrieve a description of their set of allowed configurations. An alternative 
approach is to retrieve so-called authentication vectors from the home 
aggregator and authenticate the user at the foreign aggregator, as is the case 
in UMTS [Køien03].  

In this thesis, we assume that the interactions on the signaling 
association between front-ends are based on a AAA protocol like Diameter 
[Calhoun03]. The specifics of these interactions are however outside the 
scope of this thesis. 

Signaling Associations and Network Interfaces 
In the ALIVE system, a signaling association with a local aggregator must be 
established via a network to which the local aggregator is bound (through a 
binding agreements, see Section 2.4.2). This is necessary because the 
services that a local aggregator offers are unavailable via networks that are 
not part of its service area. For example, stream-it.com (Figure 3-1) only 
accepts packets sent through hotspot.nl’s 802.11 network and blocks 
packets that originate from other networks (a similar firewalled setting is 
discussed in [Hsieh03]). 
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In general, switching controllers may be able to establish multiple 
concurrent signaling associations with the same front-end, typically via 
multiple networks. For example, inside the hotspot of Figure 3-1, the 
switching controller on Bob’s mobile host could set up a signaling 
association with multimedia-forward.nl via the host’s UMTS interface as 
well as via its 802.11 interface (multimedia-forward.nl is a global 
aggregator). 

To simplify the ALIVE system, we assume that a switching controller 
establishes at most one signaling association at a time with a certain front-
end. As a result, each signaling association (with front-ends of local 
aggregators or with front-ends of global aggregators) is bound to one 
network interface. All messages that the signaling association carries 
enter/leave the mobile host via that interface. For example, the signaling 
association between the switching controller on Bob’s mobile host and the 
front-end of media-forward.nl is either bound to the UMTS network or to 
the 802.11 network, but not to both.  

3.3 End-to-end Interactions 

This section discusses the high-level end-to-end interactions that take place 
on the signaling associations between switching controllers and front-ends 
as well as between switching controllers and media servers (see Section 
3.2.4). These interactions are: authentication interactions (Section 3.3.1), 
configuration discovery interactions (Section 3.3.2), capability discovery 
interactions (Section 3.3.3) and switching interactions (Section 3.3.4). The 
latter take place on the signaling association between switching controllers 
and media servers. 

3.3.1 Authentication 

An authentication interaction enables a switching controller to authenticate 
a user with a front-end. In the ALIVE system, a front-end must have been 
able to authenticate a user before it allows a switching controller to make 
use of its services. 

Caching Authentication State 
In the ALIVE system, successful authentication results in the switching 
controller receiving a cryptographic token that it has to use in further 
communications with the front-end (e.g., to discover an aggregator’s 
available configurations). A token indicates that the front-end has cached the 
user’s authentication state, which enables the front-end to reauthenticate 
the user from its cache rather than at the user’s home aggregator. This 
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reduces the amount of traffic in the Internet as well as the load on home 
aggregators, which aids the scalability of the system [Rosenberg98]. It also 
reduces the per-interaction delay between the switching controller and a 
front-end, which enables mobile hosts to switch between aggregators more 
quickly. Similar authentication caches are used in 802.11 networks to pre-
authenticate a user with a set of target access points to which the user’s 
mobile host can potentially handoff [Mishra04, Pack02].  

The token may need to be protected from eaves dropping, for instance 
through a mechanism that uses a pre-defined key to automatically change 
the token at both ends on an association after each interaction [Mishra04] 
or through an encryption technique such as IPsec. Such security 
mechanisms are however outside the scope of this thesis. 

Refreshing Authentication Sofstate 
In the ALIVE system, front-ends cache a user’s authentication state as 
softstate, which means that switching controllers need to regularly refresh 
this state. A switching controller and a front-end negotiate a suitable refresh 
interval during authentication. 

A switching controller can use its own refresh interval for each 
individual aggregator. Each of these intervals is however constrained by the 
range of refresh intervals acceptable to the respective front-ends. The 
rationale behind this approach is that switching controllers will typically 
strive for a long refresh interval because it reduces their bandwidth 
consumption and costs, and because it saves battery power. Front-ends, on 
the other hand, will typically use the length of the refresh interval to trade 
off memory usage (a longer refresh interval will require front-ends to 
maintain more authentication state) and the bandwidth required to handle 
refresh requests (a shorter refresh interval will result in the arrival of more 
refresh request messages).  

3.3.2 Configuration Discovery 

Configuration discovery interactions enable switching controllers to 
discover in which available configurations a user can receive a channel from 
an aggregator. To accomplish this, front-ends must describe their available 
configurations. Configuration discovery interactions have to carry the 
authentication token of Section 3.3.1.  

Configuration Descriptions 
Figure 3-8 shows what the description of set of potential configurations 
could look like in the language of the Session Description Protocol (SDP) 
[Handley98]. We will use SDP in this thesis because it is an IETF standard. 
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An alternative description language is that of SDP Next Generation 
(SDPng) [Kutscher03], but this is not a standard yet. 

s=CNN Radio
...
m=audio 0 RTP/AVP 96 97 98
a=rtpmap:96 G7221/16000
a=fmtp:96 bitrate=32000
a=fmtp:96 bitrate=24000
a=rtpmap:97 GSM/8000
a=fmtp:97 bitrate=13200
a=rtpmap:98 MP4A/LATM/8000
a=fmtp:98 bitrate=6000

configuration

 

The first line in Figure 3-8 (s=) contains the name of the channel, which is 
CNN Radio in this example. The next line (m=) describes the media type 
(audio), followed by an indication that the description is based on the RTP 
Audio-Video Profile (AVP) [Schulzrinne96b]. An RTP profile defines how 
compressed data streams must be broken up into packets for transmission 
over the Internet. An RTP profile is codec-specific. The three numbers 
behind the RTP/AVP keyword are profile identifiers. 

The attribute lines (a=) describe the actual configurations. The 
description of a single configuration consists of an rtpmap line and one of the 
fmtp lines that follow the rtpmap line. Figure 3-8 thus describes four 
configurations, two G.7221 configurations, one GSM configuration, and 
one MP4A configuration. An rtpmap line describes the configuration’s codec 
type (e.g., a G.7221 codec), while the fmtp lines describe codec specific 
parameters (e.g., a bit rate of 13.2 kbps for the GSM configuration). 

We note that the bitrate parameters in the fmtp lines in the above 
example are for illustrative purposes only. In reality, these parameters are 
codec-specific. Also note that the payload types in the media line (m=) 
merely form alternatives and do not express an ordering, as is normally the 
case in SDP. For simplicity, we omitted all other SDP lines other than s= 
and m=. 

Media Server URIs 
A front-end includes a number of media server URIs in each description of 
an available configuration. The URIs point to the aggregator’s media servers 
that can currently deliver the channel in that available configuration. The set 
of URIs of a single configuration description may consist of different types 
of URIs (e.g., a SIP and an RTSP URI). Figure 3-9 shows an example (an 
extension of Figure 3-8) in which the URIs appear in a= lines immediately 
after a configuration’s rtpmap and fmtp lines. 

Figure 3-8. SDP 
description of available 
configurations. 
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s=CNN Radio
…
m=audio 0 RTP/AVP 96 98
a=rtpmap:96 G7221/16000
a=fmtp:96 bitrate=24000
a=sip:server1.stream-it.com
a=rtsp://server2.stream-it.com
a=rtpmap:98 MP4A/LATM/8000
a=fmtp:98 bitrate=6000
a=sip:server1.stream-it.com

configuration 
plus media 
server URIs

 

The advantage of including URIs a configuration description is that 
switching controllers can directly establish a streaming session with one of 
the aggregator’s servers (e.g., using a protocol like SIP [Rosenberg02a] or 
RTSP [Schulzrinne98]). This minimizes the number of interactions 
between the switching controller and a front-end, which benefits the speed 
at which the ALIVE system can switch mobile hosts to another aggregator. 
It also enables mobile hosts to immediately start an appropriate media 
player based on the type of the URI (e.g., a media player that supports SIP 
for a SIP URI). This is important when a mobile host switches between 
different types of media servers, for instance from an RTSP server to a SIP 
server. The downside is that it requires the media servers of an aggregator 
to interact with the aggregator’s front-end, for instance to signal that a user 
has begun to receive a channel. 

Observe that a switching controller will be involved in selecting a media 
server if a configuration description contains multiple URIs. In this case, 
sever selection is a function that is distributed across front-ends and 
switching controllers. 

Virtual Home Environment 
The aggregators in the ALIVE system provide a virtual environment of home 
configurations. This means that front-ends use the configurations in a user’s 
delivery agreement (i.e., his allowed configurations) to describe a user’s 
available configurations, irrespective of whether the user is a foreign user or 
a user that has a delivery agreement with the aggregator. At the same time, 
aggregators actually deliver channels in their own configurations. For 
example, the front-end of stream-it.com (Figure 3-5) describes the CNN 
TV configurations available to Bob in terms of the configurations that 
appear in Bob’s delivery agreement with media-forward.nl, but stream-
it.com’s media servers deliver CNN TV in one of its own equivalent 
configurations. Figure 3-10 illustrates this. 

Figure 3-9. SDP 
description of available 
configurations, including 
media server URIs. 
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The main advantage of a virtual home environment is that foreign 
aggregators do not have to expose descriptions of the configurations they 
support to foreign users, which is something that they may consider 
undesirable for competitive reasons. Another advantage is that it simplifies 
switching controllers because they only have to deal with the configuration 
descriptions of a user’s home aggregator. This for instance simplifies the 
mapping between configuration descriptions and the quality label associated 
with the configuration (see Section 2.2.4). A disadvantage of the approach 
is that the perceptual quality of the foreign configurations may slightly differ 
from those of the home configurations, which may be noticeable to the user 
(who expects a quality levels of the configurations of his home aggregator). 
In addition, aggregators need to posses more intelligence because front-
ends need to be able to map foreign configurations to the configurations of 
the user’s home aggregator and media servers need to do the opposite (see 
Section 3.3.4). The conversion will however be computational simple. 
Roaming agreements furthermore typically change infrequently, which for 

Figure 3-10. Virtual 
environment of home 
configurations.  
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instance enables media servers to store roaming agreements locally and do 
the conversion themselves. 

Observe that the virtual home environment of configurations is similar 
to the ubiquitous availability of certain service numbers in contemporary 
cellular networks (e.g., 333 for voice mail access).  

Configuration Changes 
Changes in a user’s set of available configurations may make a switching 
controller decide to switch to another aggregator. One way to detect such 
changes is to have switching controllers poll a front-end for a description of 
its currently available configurations. However, a more efficient approach is 
to make use of an eventing mechanism in which a front-end pushes 
configuration change events to switching controllers (cf. the announcement 
protocols of SIP [Roach02], SLP [Kempf00], and UPnP [Microsoft00]). 
Switching controllers receive these events after they have subscribed to the 
notification service. 

The change notifications that a front-end issues contain the name of a 
channel and a description of available configurations in which a user can 
currently receive that channel. An alternative approach is to transmit the 
delta with the previous notification message, which means that a 
notification only describes those configurations that have become 
(un)available since the transmission of the previous configuration 
notification. The downside is that this requires the switching controller to 
receive all the notifications that a front-end sent to maintain a consistent 
view of a user’s available configurations, which may be difficult in a wireless 
environment. An advantage of only transmitting deltas is that it saves 
network bandwidth as the size of the messages will typically be smaller. 

Preferred Configurations 
As part of configuration discovery, switching controllers can express their 
interest in a subset of a user’s allowed configurations. A switching controller 
could for instance prefer configurations that provide mono audio because 
the mobile host does not have the capabilities to deal with configurations 
that provide stereo audio.  

3.3.3 Capability Discovery 

To decide if it wants to use a particular aggregator, a switching controller 
may first want to discover the capabilities of its front-end. In this thesis, we 
only consider one capability, which is the event reporting capability. If a 
front-end has this capability, it can report events that signal changes in a 
user’s set of available configurations. As a result, switching controllers do 
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not have to regularly send configuration requests to such front-ends (i.e., 
poll it).  

We assume that the capabilities of front-ends change seldomly, which 
means that there is no need for capability notifications that signal changes 
in a particular front-end’s capabilities. 

In general, it is also possible that the different media servers that appear 
in a configuration description (see Section 3.3.2) have different capabilities. 
For example, some servers may allow switching controllers to begin the 
reception of a channel at a specific point (e.g., 5 minutes and 30 seconds 
from the beginning). Switching controllers might prefer such servers 
because it will enable them continue to receive a channel at exactly the 
same point where it left off at the old server. We will however not consider 
the topic of media server capabilities any further in this thesis. 

3.3.4 Switching 

Switching interactions involve the establishment of a multimedia session 
with a target media server and the release of the multimedia session with 
the current media server. A switching controller establishes and releases 
multimedia sessions through direct signaling associations with media servers 
(see Section 3.2.4). 

To establish a multimedia session, the switching controller must inform 
the target media server of the user’s authentication token and a description 
of the actual configuration in which the switching controller wants to 
receive a channel from the media server. As a result of the virtual 
environment of home configurations, the actual configuration is an allowed 
configuration of the user’s home aggregator (see Section 3.3.2), which 
means that the media sever of a foreign aggregator needs to map it to one of 
its own configurations. 

To release a session, the switching controller has to inform the media 
server of the user’s authentication token and a description of an actual 
configuration. Strictly speaking, the configuration description is only 
required for intra-server switches (see Section 3.1.2). For all other types of 
switches, media servers need to be able to detect switching controllers that 
do not release a multimedia session in an orderly manner (e.g., using RTCP 
Receiver Reports [Schulzrinne96a]), for example because their network 
connection went down suddenly. The media servers can then clean up the 
resources the mobile host was using (e.g., transcoders, if any) and inform 
the front-end that the user is no longer receiving the channel. 
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3.4 ALIVE Control Points and Services 

Figure 3-11 shows the internal organization of switching controllers and 
front-ends. Both components consist of a control point and an ALIVE protocol 
entity (PE in Figure 3-11). The control points are primarily responsible for 
local processing (e.g., deciding if the switching controller should initiate 
configuration discovery), while the ALIVE protocol entities focus on 
realizing the end-to-end interactions of Section 3.3 (e.g., refreshing a user’s 
authentication state). For ease of writing, we usually refer to the control 
point of a switching controller as the client control point. 

control
point

control
point

switching
controller control

point
control
point

front-end
(foreign aggregator)

AAA server
(foreign)

AAA server
(foreign)

roaming
directory
roaming
directory

user
directory

user
directory

server 
monitor
server 
monitor

discovery and 
notification services

ALIVE protocol AAA protocolconnectivity 
handler

connectivity 
handler

ALIVE
front-end PE

ALIVE 
client PE

ALIVE 
client PE

pool of media 
servers

mobile host

user

 

The ALIVE protocol entities provide four services to the control points: 
– A configuration discovery service, which enables client control points to 

discover in which configurations it can receive a particular channel; 
– A capability discovery service with which a client control point can 

discover the capabilities of front-ends; and 
– A configuration notification service, which informs client control points 

of changes in the available configurations of a channel. 
The ALIVE protocol entities do not provide a capability notification 

service because we have assumed that a front-end’s capabilities change very 
infrequently (see Section 3.3.3). 

A switching controller also contains a connectivity handler, which is a 
component that takes care of the network-level interactions, for instance 
with aggregator directories and access points (e.g., to execute a handoff). A 
connectivity handler offers three services: 

– An aggregator discovery service, which enables a client control point to 
discover aggregators; 

– An aggregator notification service, which informs client control points 
of changes in the availability of aggregators on a network; and 

Figure 3-11. Internal 
organization of switching 
controllers and front-
ends. 
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– A handoff service, which enables client control points to execute a 
handoff. 

The other components in Figure 3-11 are a server monitor, a roaming 
directory, a user directory, and a AAA server. The server monitor is a local 
service that keeps track of the available resources on the aggregator’s media 
servers. The front-end control point uses this service to determine in which 
configurations the aggregator’s media servers can currently deliver a 
particular channel. The roaming directory stores the roaming agreements that 
the aggregator has established with other aggregators. The front-end control 
point uses the roaming directory to map descriptions of its own 
configurations to foreign configurations, and vice versa (see the virtual 
home environment of Section 3.3.2). The AAA server and the user 
directory are used by the ALIVE protocol entity at the front-end and will be 
discussed Section 3.6.3. 

Figure 3-12 shows the internal organization of a media server, which also 
contains a control point and an ALIVE protocol entity. The ALIVE protocol 
entity on the mobile host and the ALIVE protocol entity on the media 
server provide a switching service, which enables a client control point to 
execute a switch. 
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The other components on a media server are a roaming directory and a set 
of media forwarders. The roaming directory contains the same information 
as the roaming directory of the front-end. The control point of the media 
server uses the roaming directory to map descriptions of the aggregator’s 
own configurations to foreign configurations, and vice versa (virtual home 
environment). The media forwarders receive the actual multimedia streams 
from a source, optionally manipulate them, and forward them to a mobile 
host. 

In this section, we focus on the behavior of the control points and on 
the services provided by the ALIVE protocol entities and the connectivity 

Figure 3-12. Internal 
organization of media 
servers. 
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handler. We assume that these services offer some form of transaction 
management (e.g., a transaction ID in the services’ primitives) so that the 
control points can match requests with responses.  

We first consider the control points of switching controllers (Section 
3.4.1), front-ends (Section 3.4.2), and media servers (Section 3.4.3). After 
that, we consider the configuration discovery service (Section3.4.4), the 
configuration notification service (Section 3.4.5), the capability discovery 
service (Section 3.4.5), and the switching service (Section 3.4.7). At the 
end of this section, we also consider the services of the connectivity handler 
(Section 3.4.8) and the server monitor (Section 3.4.9). The details of these 
two components are however outside the scope of this thesis, which is why 
we only consider the local services that they provide. 

We will consider the ALIVE protocol and the internal behavior of the 
ALIVE protocol entities in Section 3.5. 

3.4.1 Client Control Point 

The control point on the mobile host goes through the five steps of Section 
3.1.3. It uses the services provided by ALIVE protocol entities as follows: 
1. The control point detects remote environment changes through the 

configuration notification service and the aggregator notification service. 
Local components such as the resource manager (see Section 3.2.1) also 
inform the control point of environment changes on the mobile host 
(e.g., a change in available battery power); 

2. If configuration discovery is necessary, the control point invokes the 
configuration discovery service. During configuration discovery, the 
control point might use the handoff service to execute a handoff on one 
of the host’s interfaces. After such a handoff, the control point invokes 
the aggregator discovery service to discover new local aggregators on the 
target network and the capability discovery service to discover the 
capabilities of these front-ends (optional). If the control point decides 
to use any of the new aggregators, it reinvokes the configuration 
discovery service for the newly discovered aggregators. The latter implies 
that the configuration discovery service should be able to add new 
aggregators to an ongoing discovery procedure; and 

3. If a switch is required, the control point invokes the switching service. 

Hysteresis 
The client control point should apply some sort of hysteresis to the 
environment changes. An 802.11 network interface could for instance 
alternately report that the 802.11 signal strength is ‘low’ or ‘moderate’, 
which may have the effect that the control point ping-pongs between 
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aggregators [Hesselman01]. A similar problem exists at the network-level 
where mobile hosts handoff between networks [Pollini96]. 

Parallel Tasks 
The services provided by the ALIVE protocol entities and the connectivity 
handler should enable the client control point to perform certain tasks in 
parallel to minimize the configuration discovery delay. Specifically, they 
should enable the client control point to  

– Simultaneously discover available configurations on different 
interfaces; 

– Discover new aggregators on a new network (i.e., after a handoff) 
and concurrently discover the capabilities of their front-ends; and 

– Decide which available configuration is the best one during 
discovery. 

3.4.2 Aggregator Control Point 

The control point of a front-end is the peer of a client control point. A 
front-end’s control point governs the availability of an aggregator’s 
configurations. It has two responsibilities: 

– Make availability decisions, which means that the control point 
decides which of the aggregator’s supported configurations are 
available configurations (e.g., using the aggregator’s policies); and 

– Map descriptions of the aggregator’s supported configurations to 
descriptions of foreign configurations, and vice versa. 

Authentication and authorization of users is transparently handled by the 
underlying ALIVE protocol entity (see Section 3.6), which enables the 
control point to concentrate on the availability of the aggregator’s 
configurations. 

We distinguish two types of events that require an availability decision: 
local events (e.g., the time of day changing to rush-hour or the server 
monitor indicating that the available resources on the media servers have 
changed) and remote events, specifically requests from client control points 
for a description of a channel’s available configurations. 

Requests from Client Control Points 
If the configuration discovery service indicates that a client control point 
solicits a description of the available configurations of a channel, the front-
end control point goes through three steps: 
1. Decide in which configurations the aggregator can currently deliver the 

channel to the user. This requires the control point to get a description 
of the user’s allowed configurations and consult the server monitor to 
check in which configurations the aggregator’s media servers can 
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currently deliver the channel. The control point also needs to make a 
decision on the media servers that it will present to the client control 
point for each available configuration; 

2. Use the ID of the user’s home aggregator and the roaming agreements 
in the roaming directory to map the descriptions of the available 
configurations to descriptions of equivalent foreign configurations (this 
step is null if the user is not a foreign user); and 

3. Use the configuration discovery service to return the result to the client 
control point. 

Local Events 
For local event, the control point also goes through three steps: 
1. Decide which channels are available in which configurations and check if 

this was different before the event; 
2. If the available configurations of a particular channel have changed, use 

the roaming agreements to map the new set of available configurations 
to foreign configurations. Do this for every foreign aggregator that 
appears in the roaming directory; and 

3. Use the configuration notification service to convey the descriptions of 
the foreign configurations to client control points. 

3.4.3 Media Server Control Point 

The control point of a media server is a peer of the client control point on a 
mobile host. A media server control point establishes and releases 
multimedia sessions with a mobile host. It has two responsibilities: 

– Start and stop media forwarders; and 
– Map descriptions of the aggregator’s supported configurations to 

descriptions of foreign configurations, and vice versa (also see front-
end control point, Section 3.4.2) 

The control point of a media server receives requests for the 
establishment or release of a session from the switching service. The 
requests contain the name of a channel and a description of a configuration 
(see Section 3.4.7). 

The behavior of a media server’s control point to establish a multimedia 
session consists of three steps: 
1. If the switching service indicates that a switching controller is soliciting 

the establishment of a session, use the agreements in the roaming 
directory to translate the foreign configuration in the solicitation to one 
of the aggregator’s own supported configurations (this step is null for 
users that are not foreign users); 

2. Find a media forwarder that can deliver the channel in that 
configuration and check if there are sufficient resources to run it; and 
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3. If this is the case, start the media server, and inform the remote control 
point that the session has been established. 
When the switching service indicates that a switching controller is 

soliciting the release of a session, the control point simply stops the 
corresponding media forwarder. 

For each of its active media forwarders, the media server control point 
also checks if the forwarder’s streams are still being received. If this is no 
longer the case (e.g., because the mobile host moved to another network 
without having been able to release the session), then the control point 
stops the corresponding media forwarder. A control point can for instance 
detect the disappearance of a receiver through the absence of RTCP 
Receiver Reports [Schulzrinne96a]. 

3.4.4 Configuration Discovery Service 

The configuration discovery service enables the control point on the mobile 
host to discover the available configurations in which a user can receive a 
particular channel from a set of front-ends. 

Figure 3-13 shows the basic behavior of the configuration discovery 
service. It involves four types of primitives: requests, indications, responses, 
and confirmations. The vertical lines in Figure 3-13 correspond to the 
service boundary between a control point and an ALIVE protocol entity. 
Time progresses from top to bottom.  

indication

response
indication

response

request

confirm

confirm

front-end A front-end B
switching 
controller

discovery end  

The configuration discovery service is a multiparty service, which means 
that a single request can result in indications at multiple front-ends. This 
enables the control point on the mobile host to discover configurations at 
multiple front-ends simultaneously, which reduces the switching delay. 
However, the configuration discovery service reports one confirmation per 
front-end (i.e., per response primitive) and issues them during discovery 
(i.e., instead of issuing a batch confirmation at the end of the discovery 
period). This enables the control point to make switching decisions as soon 
as possible, which also helps reducing the switching delay. 

Figure 3-13. Behavior of 
the configuration 
discovery service. 
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The configuration discovery service can be invoked again during 
configuration discovery so that the client control point can add new front-
ends to the discovery procedure (e.g., when it has discovered new front-
ends after a handoff). 

The configuration descriptions in the service’s primitives are in terms of 
the configurations that a user can receive from his home aggregator (see the 
responsibilities of the front-end’s control point, Section 3.4.2). 

Requests 
The control point on the mobile host invokes the configuration discovery 
service through a configuration discovery request primitive. The parameters 
of a request consist of a set of front-end URIs, an interface ID per URI, a 
channel name, the user’s identity (e.g., bob@media-forward.nl) and 
credentials, and an optional description of a set of preferred configurations. 
The preferred configurations have to be a subset of the allowed 
configurations that appear in a user’s delivery agreement with his home 
aggregator. 

A discovery request also contains a parameter that specifies a maximum 
amount of time for configuration discovery, starting from the point at 
which the control point submits the request. This parameter ensures that 
the ALIVE client protocol entity discards late arrivals. When the 
configuration discovery service is re-invoked during discovery, the value of 
the maximum discovery time parameter is added to the total maximum 
discovery time. 

Indications 
An indication primitive signals that a switching controller is soliciting a 
description of the available configurations in which a user can receive a 
certain channel. An indication contains the identity of the user (e.g., 
bob@media-forward.nl), a channel name, and a description of a user’s 
allowed configurations. If the request contained a set of preferred 
configurations, then the indication contains a description of that set of 
configurations. Notice that the control point of a front-end uses the identity 
of a user to identify the user’s home aggregator (see Section 3.4.2). 

An indication only occurs when a user can be authenticated. The 
configuration discovery service provider (specifically, the ALIVE protocol 
entities) transparently handles authentication, thus hiding the 
authentication process from the front-end’s control point. 

Responses 
The control point of a front-end handles indications and returns the result 
in a response primitive. A response contains a channel name and a 
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description of the available configurations of that channel. The available 
configurations are a subset of the configurations in the indication. 

A response also contains a status code that either indicates that the 
control point successfully served the request (OK), or that indicates that the 
aggregator cannot deliver a certain channel (NotFound). The latter typically 
happens when the aggregator does not have a forwarding agreement (see 
Section 2.2.5) with the source from which the channel originates. 

Confirmations 
Each response results in a discovery confirmation at the switching controller 
that issued the request. A confirmation primitive contains the configuration 
description of the corresponding response, the response’s status code, and 
the URI of the front-end that issued the response. If the user could not be 
authenticated at the front-end, then the status code is Forbidden. 

Summary 
Table 3-1 summarizes the parameters of the configuration discovery 
service’s primitives. 

 
Primitive Parameters Location 
Request Maximum discovery time, channel name, user ID, credentials, front-end 

URIs, interface for each front-end, preferred configurations (optional) 
SC 

Indication Channel name, user ID, allowed configurations FE 
Response Status code, channel name, description of available configurations FE 
Confirm Front-end URI, status code, channel name, description of available 

configurations 
SC 

3.4.5 Capability Discovery Service 

The capability discovery service enables the control point on the mobile 
host to discover the capabilities of front-ends (e.g., if they can notify the 
control point of changes in a user’s available configurations). The behavior 
of the capability discovery service is the same as that of the configuration 
discovery service (see Figure 3-14), except that the primitives carry different 
parameters. 

A capability discovery request contains a set of front-end URIs, an 
interface identifier per URI, and a maximum discovery period. An 
indication contains does not contain any parameters. A response primitive 
contains a description of the front-ends capabilities. The confirmation 
contains the URI of a front-end and the capability description returned by 
the corresponding front-end. Notice that a capability discovery request does 
not contain the user’s credentials because the service does not require users 
to be authenticated.  

Table 3-2 summarizes the primitives of the capability discovery service. 

Table 3-1. Service 
primitives of the 
configuration discovery 
service. 
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Primitive Parameters Location 
Request front-end URIs, interface for each front-end, maximum discovery time SC 
Indication - FE 
Response Description of capabilities FE 
Confirm Front-end URI, description of capabilities SC 

3.4.6 Configuration Notification Service 

The configuration notification service enables the client control point to 
detect changes in the availability of configurations. Figure 3-14 shows the 
service’s basic behavior, which involves a subscribe primitives, confirmation 
primitives, requests primitives, and notification primitives. Client control 
points use the subscribe primitive to subscribe to configuration notifications 
for certain front-ends. The configuration notification service manages the 
subscription of users to events, which means that a front-end control point 
does not receive an indication primitive when a user subscribes.  
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notification

notification

front-end
switching 

controller A
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switching 
controller B

request
notification

notification

confirm confirm

 

Subscribes 
The switching controller has to subscribe to configuration notifications 
through a subscribe primitive. A subscribe primitive contains the user’s 
identity and credentials, a URI of a front-end and the name of the interface 
through which it can be reached, a channel name, and an optional 
description of a set of configurations in which the switching controller is 
particularly interested. 

Confirmations 
A confirmation acknowledges the subscription of a user to the configuration 
notification service. It contains a status code that indicates if the 
subscription succeeded (OK), the URI of the front-end, and the channel 
name that also appeared in the subscribe request. The status code may also 
indicate that the front-end does not support configuration notifications 

Table 3-2. Service 
primitives of the 
capability discovery 
service. 

Figure 3-14. Behavior of 
the configuration 
notification service. 
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(NotSupported) or that the switching controller is not authorized to subscribe 
to the events (Unauthorized). 

Requests 
The control point at the front-end issues request primitives to notify 
subscribed switching controllers of changes in the aggregator’s available 
configurations (see step 2 in Section 3.4.2). Each request primitive results 
in notifications at multiple switching controllers. 

The request’s parameters are the name of a channel, a set of aggregator 
IDs (the aggregators that appear in the front-end’s roaming directory, see 
Section 3.4.2), and a description of available configurations per aggregator 
ID. 

Notifications 
A notification contains the URI of an aggregator’s front-end, a channel 
name, and a description of the available configurations in which a user can 
currently receive the channel from the aggregator.  

Provider-initiated Notifications 
If a front-end does not support notifications, then the configuration 
notification service generates notifications on its own initiative, as shown in 
Figure 3-15. Provider notifications do not require a client control point to 
first issue a subscribe primitive. The parameters of a provider notification 
are the same as those of a notification to which the client control point 
explicitly subscribed. 
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Summary 
Table 3-3 summarizes the parameters of the notification service. 

 
Primitive Parameters Location 
Subscribe Front-end URIs, interface for each front-end, channel name, user ID, 

credentials, maximum time to subscribe 
SC 

Confirmation Status code, front-end URI, channel name SC 

Figure 3-15. Provider 
notifications. 

Table 3-3. Service 
primitives of the 
configuration notification 
service. 
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Request Channel name, aggregator IDs, description of available configurations 
per aggregator ID 

FE 

Notification Front-end URI, channel name, description of available configurations SC 

3.4.7 Switching Service 

The switching service enables the control point on the mobile host to 
switch the host to a target media server of the target aggregator. Figure 3-16 
shows the service’s behavior (break-before-make strategy), which involves 
four types of primitives: requests, indications, responses, and confirmations. 
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Requests 
The control point on the mobile host uses a switch request primitive to 
initiate a switch. A switching request contains the user’s ID, his credentials, 
a description of a target configuration (the configuration the control point 
considers the best one) and two URIs, one of the current media server and 
one of the target aggregator. Each of the URIs comes with the identity of a 
network interface through which the media servers are can be reached. The 
request primitive furthermore contains a switching strategy (e.g., break-
before-make or make-before-break), and the maximum amount of time 
that the ALIVE protocol entities can use to execute the switch. The final 
parameter is a session release delay, which has to be used in combination 
with a make-before-make switching strategy. The session release delay 
specifies how long the mobile host should continue to receive a channel 
from the current media server, starting from the point at which the mobile 
host begins to receive the channel from the target media server. The session 
release delay enables the mobile host to receive two copies of the same 
channel for a specified amount of time, which can help to keep the host’s 
playout buffer (see Section 3.2.1) filled. 

Indications 
As a result of a request, a switching indication occurs at the target media 
server and optionally at the current media server. The order in which these 

Figure 3-16. Behavior of 
the switching service. 
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indications occur depends on the switching strategy. In a make-before-
break switch, the indication will first occur at the target media server and 
then at the current media server. For break-before-make switches it will be 
the other way around. 

The indication at the old media server is optional because a mobile host 
may no longer be able to reach its current media server, for instance 
because it roamed into a network where the current aggregator is no longer 
available. To deal with such situations, the control points of media servers 
have to be able detect mobile hosts that are no longer receiving streams 
from the media server (see Section 3.4.3). 

A switch indication contains a user ID, a channel name, and a 
configuration description, all three of which are the same as in the 
switching request. The user’s ID enables the control point on the media 
server to map the configuration description in the indication to a 
description of one of its own supported configurations (see media server 
control point, Section 3.4.3). 

A switch indication only occurs if a user has been successfully 
authenticated. The ALIVE protocol entity on the media server checks this in 
a way transparent for the server’s control point. 

Responses 
The control point on the target media server reacts to a switch indication 
with a switch response. The response contains a status code that indicates if 
the control point is willing to serve the switching controller. 

The control point on the current media server does not issue a 
response. 

Confirmations 
A switch confirmation primitive signals that the switch has been executed 
(i.e., that the session with the old media server has been released and the 
session with the target media server has been established). A switch 
confirmation primitive contains the URI of the target media server and the 
status code that the target media server used in its response. 

Summary 
Table 3-4 summarizes the parameters of the switching service. 

 
Primitive Parameters Location 
Request Channel name, description of target configuration, user ID, 

credentials, current media server URI, target media server URI, 
interface ID per media server, switching strategy, maximum switching 
time, session release delay 

SC 

Indication Channel name, configuration description, user ID MS 
Response Status code Target MS 

Table 3-4. Service 
primitives of the 
switching service. 
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Confirm Status code, front-end URI SC 

3.4.8 Connectivity Handler Services 

A connectivity handler provides an aggregator discovery, an aggregator 
notification, and a handoff service. The service primitives described in this 
section define the interactions between the client control point and the 
connectivity handler. The remote primitives are outside the scope of this 
thesis. 

Aggregator Discovery Service 
The aggregator discovery service enables the client control point to discover 
the local aggregators available on a certain network. The service’s request 
primitive contains the name of one of the mobile host’s interfaces and the 
name of a network on that interface. The confirmation that follows contains 
a set of URIs that point to the front-ends of the local aggregators on the 
network.  

Aggregator Notification Service 
The aggregator notification service enables the client control point to detect 
changes in the availability of local aggregators on a certain network. The 
service’s primitives consists of a subscribe primitive (to subscribe to the 
service) and of notification primitives (to notify the control point of 
changes). The subscribe primitive contains the name of one of the host’s 
interfaces and the name of a network on that interface. The parameters of a 
notification consist of an interface name, a network name, and a set of 
URIs that indicate which aggregators are currently available on the network. 

Handoff Service 
The handoff service enables the control point to execute a handoff on one 
of the mobile host’s interfaces. The parameters of the request consist of an 
interface name, the identity of the current and target networks, the user’s 
identity and credentials, and a handoff specification. The latter could for 
instance specify the maximum amount of time that the connectivity handler 
is allowed to spend on a particular handoff, or the strategy that it should use 
in executing the handoff (e.g., make-before-break). 

The realization of the handoff service typically requires the connectivity 
handler to perform a considerable number of tasks, such as: 

– Authenticate the user on the target network (e.g., using 802.1x for 
802.11 networks [Mishra04, Pack02, Gast02]); 

– Obtain an IP address for the interface (e.g., using DHCP [Droms99, 
Vatn98]); 



 ALIVE CONTROL POINTS AND SERVICES 67 

 

– Perform a location update (e.g., using Mobile IP [Solomon98], SIP 
[Wedlund99, Kwon02], SLM [Landfeldt99], and so on); and 

– Update the host’s settings after a location update (e.g., adapting its 
routing tables [Peddemors04]); and 

– Actually execute the handoff (e.g., between two 802.11 access points 
[Mishra03, Vatn03, Velayos03, DeCleyn04]). 

The details of the execution of a handoff are however outside the scope 
of this thesis. 

Summary 
Table 3-5 summarizes the local service primitives of the connectivity 
handler. 

 
Service Primitives Parameters 

Request Interface, network Aggregator discovery 
Confirmation Interface, network, set of front-end URIs 
Subscribe Interface, network 
Confirmation Interface, network 

Aggregator notification 

Notification Interface, network, set of front-end URIs 
Request Interface, current network, target network, user ID, 

credentials, handoff specification 
Handoff 

Confirmation Status code 

3.4.9 Server Monitor 

A server monitor enables the control point of a front-end to check in which 
configurations the aggregator’s media servers can currently stream out a 
particular channel. Table 3-6 shows the server monitor’s service. The 
configuration descriptions are in terms of the aggregator’s own supported 
configurations. 

 
Primitive Parameters 
Request Channel name, description of supported configurations (optional) 
Confirmation Channel name, description of supported configurations plus URIs per configuration 
Subscribe Channel name 
Notification Channel name, description of configurations 

The request primitive of the server monitor service contains the name of a 
channel and the description of one or more supported configurations 
(optional). A request results in a confirmation primitive that contains a 
description of the configurations in which the channel can currently be 
streamed off an aggregator’s media servers, including a set of media server 
URIs per configuration. The configurations in the confirmation are a subset 
of those in the request, if any.  

Table 3-5. Service 
primitives of the 
connectivity handler. 

Table 3-6. Service 
primitives of the server 
monitor. 
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The server monitor service also contains a subscribe primitive with 
which the control point can subscribe to events that signal changes in the 
configurations in which media servers can deliver a certain channel (e.g., a 
change in the set of servers that can deliver a certain configuration). After 
calling the subscribe primitive, the server monitor server will issue 
notification primitives to indicate such changes. 

Realization 
Conceptually, the server monitor builds on a database that contains entries 
of the form <channel name, configuration descriptions, URIs per 
configuration description>. To serve requests, the server monitor matches 
the channel name and configuration descriptions in a request primitive with 
the information in the database, and returns the result in a confirmation 
primitive. 

To detect changes in the availability of configurations, the server 
monitor has to be able to communicate with the media servers of an 
aggregator (e.g., by polling the media servers for their available resources 
such as processing load). The actual synchronization mechanism as well as 
the details of the server monitor’s internal operation are however outside 
the scope of this thesis. 

In general, the server monitor can be realized on a centralized server, or 
it can be distributed across the media servers of an aggregator [Amir98]. 

3.5 ALIVE Policies 

One of the requirements of the ALIVE system is that it should enable users 
and other stakeholders (e.g., the system administrator of a set of mobile 
hosts or their manufacturers) to flexibly change the rules based on which 
the ALIVE system makes decisions (see Section 3.1.3). In this thesis, we use 
policies for this purpose [Kamilova05, Zhuang03]. In general, policies are 
rules with conditions and actions that are used by a controlling entity to 
continuously govern the behavior of a controlled entity. Policies have a goal, 
which means that the controlling entity aligns the behavior of the entire 
system (controlling entity plus controlled entity) with the goals of the 
policies. 

The controlling entity is usually referred to as the Policy Decision Point 
(PDP), while the controlled entity is called the Policy Enforcement Point 
(PEP) [Westerinen01]. 

In a policy-based system, policies can typically be downloaded into a 
PDP from a (central) repository, thus changing the behavior of the entire 
system (i.e., PDP plus PEP) without halting it (‘always on’). Another 



 ALIVE POLICIES 69 

 

advantage is that this enables policies to be enforced consistently across 
multiple devices (e.g., across the mobile hosts of a user). 

The PDPs in the ALIVE system are part of the client control points and 
the control points of front-ends and media servers. The remaining parts of 
the control points plus the ALIVE protocol entities and the connectivity 
handler are PEPs. 

In this section, we concentrate on the policies of the client control 
point. We first discuss which policies it can use (Section 3.5.1) and then 
consider a scenario in which policies control a switch (Section 3.5.2). 

3.5.1 ALIVE Client Policies 

ALIVE policies consist of the usual condition and action parts 
[Westerinen01] augmented with a clause that specifies the goal of the policy 
[Cox99]. The condition indicates when the policy fires (e.g., “if signal-to-
noise ration greater than 4 dB and speed smaller than 20 km/hr”), the 
action indicates which service to invoke (e.g., “initiate configuration 
discovery”) when the policy fires, and the goal represents what the policy is 
trying to accomplish (e.g., “smooth switching”). The ALIVE protocol entity 
and the connectivity handler must execute the actions of a policy when it 
fires, which means that the ALIVE policies are obligation policies [Cox99]. 
Other policy types (e.g., prohibition or authorization policies) are outside 
the scope of this thesis. 

We distinguish two types of policies that a client control point can use: 
configuration discovery policies (when to initiate configuration discovery) 
and switching policies (when and how to initiate a switch). Figure 3-17 
shows an example of two configuration discovery policies (taken from 
[Kamilova05]). The two policies have different goals. The goal of the first 
policy is facilitate smooth switching (i.e., before the host’s playout buffer 
empties), while the goal of the second policy is to do the same in a 
moderately smooth manner (e.g., allowing the buffer to be empty for some 
time). The policies realize their goals through different levels of proactivity. 
The first policy initiates configuration discovery when the number of lost 
multimedia packets on the mobile host’s 802.11 interface increases to 
above 20%, while the second one waits until this is 50%. With the second 
policy, there is a higher chance of the playout buffer on the mobile host 
depleting, but it makes the host stick with the 802.11 for a longer period of 
time. This strategy might be preferable for 802.11 networks because they 
are typically cheaper to use than a network like UMTS.  
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<policy>CONFIGURATION_DISCOVERY
<goal>

<smoothness>HIGH</smoothness>
</goal>
<condition>

<receiving_interface>WLAN</receiving_interface>
<packet_loss>20

<operator>GREATER_THAN</operator>
</packet_loss>

</condition>
<action>

<max_discovery_time>SHORT</max_discovery_time >
<discover_alternatives/>

</action>
</policy>
<policy>CONFIGURATION_DISCOVERY

<goal>
<smoothness>MODERATE</smoothness>

</goal>
<condition>

<receiving_interface>WLAN</receiving_interface>
<packet_loss>50

<operator>GREATER_THAN</operator>
</packet_loss>

</condition>
<action>

< max_discovery_time>DEFAULT</ max_discovery_time>
<discover_alternatives/>

</action>
</policy>  

The PDPs in the ALIVE system also use the goals of policies as a key to 
retrieve the proper policies from a policy repository, which can for instance 
contain policies described in XML (see the example of Figure 3-17). The 
client control point could for instance retrieve those policies from the 
repository that match the preferences of the user.  

3.5.2 Operation 

Figure 3-18 shows a scenario (taken from [Kamilova05]) in which the client 
control point (the PDP) makes a policy decision at point B in Figure 3-1. 
The environment monitor represents the local components on the mobile 
host (e.g., the local resource manager and the host’s interfaces). 

Figure 3-17. Examples 
of configuration 
discovery policies. 
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At point B, the client control point receives an event from the mobile host’s 
802.11 network interface indicating that a new 802.11 network has come 
into range (the network of hotspot.nl, see Figure 3-1). The event triggers the 
evaluation of the discovery policies in the client control point. In the 
example of Figure 3-18, this results in a configuration decision that indicates 
that the client control point should invoke the configuration discovery 
service (see Section 3.4.4). As a result of the service invocation, the mobile 
host exchanges configuration request and response messages with the front-
ends of the two aggregators. The configuration responses carry descriptions 
of available configurations, in this case a description of the configurations in 
which Bob can receive CNN TV. The configuration request and response 
messages are part of the ALIVE protocol and will be discussed in detail in 
Section 3.6. 

The client control point receives the descriptions of the available 
configurations in confirmation primitives (see Section 3.4.4). Each time the 
client control point receives a confirmation, it evaluates its switching 
policies. In the example of Figure 3-18, these policies make the client 
control point decide to switch Bob’s mobile host to stream-it.com and 
perform the switch in a break-before-make manner (e.g., as part of a 
moderately smooth switching strategy). The establishment and release 
messages shown in Figure 3-18 are part of the ALIVE protocol and will be 
discussed in Section 3.6 as well.  

Figure 3-18. Policy-
controlled scenario. 
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3.6 ALIVE Protocol 

The ALIVE protocol realizes the ALIVE services of Section 3.4. The ALIVE 
protocol consists of the messages exchanged between switching controllers 
and front-ends and between switching controllers and media servers. These 
interactions take place on the signaling associations of Section 3.2.4. The 
AAA interactions between front-ends are not part of the ALIVE protocol. 

In this section, we concentrate on the ALIVE-specific part of the 
protocol. We assume that more common protocol functions are in place. In 
particular, we assume that the ALIVE protocol entities provide some sort of 
transaction management, that they take care of addressing, and that 
messages are delivered reliably. An implementation of the ALIVE protocol 
(see Section 3.7) needs to realize these functions.  

3.6.1 Message Overview 

Table 3-7 provides an overview of the ALIVE protocol messages, specifically 
for which services they are used and what their purpose is. Each message 
type consists of a request and a response (e.g., a capability request and a 
capability response). 
 
Service Messages Purpose 

Authentication request & 
response 

Authenticate a user at a front-end and 
cache his authentication state 

Configuration discovery 

Configuration request & 
response 

Get a description of the available 
configurations in which a user can receive 
a channel from a front-end 

Subscribe request & 
response 

Subscribe to configuration notifications Configuration notification 

Configuration notification Notify switching controllers of changes in 
the set of available configurations in which 
a user can receive a channel 

Refresh authentication state 
(hidden from control points) 

Refresh request & 
response 

Refresh a user’s authentication state at a 
front-end 

Capability discovery Capability request & 
response 

Get a description of a front-end’s 
capabilities 

Establishment request & 
response 

Establish a multimedia session with a 
media server 

Switching 

Release request & 
response 

Release a multimedia session with a media 
server 

3.6.2 Client-side Protocol Entity 

The ALIVE client protocol entity maintains a block of state for each front-
end with which it has successfully authenticated the user. This enables it to 
send each front-end a regular refresh request to keep the user’s 

Table 3-7. Overview of 
ALIVE protocol 
messages. 
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authentication state alive (see Section 3.3.1). The per-front-end state also 
enables the ALIVE protocol entity to store the properties of front-ends 
(e.g., the refresh intervals that they accept and the authentication tokens 
they issued) and hide that information from the control point. This 
simplifies the interactions between the ALIVE protocol entity and the 
control point. For example, the control point only has to inform the ALIVE 
protocol entity of new front-ends and not of already discovered front-ends. 

Configuration Discovery 
When the ALIVE client protocol entity receives a configuration discovery 
request primitive, it sends configuration requests to known front-ends (i.e., 
to front-ends in the request primitive for which it maintains state) and 
authentication requests to new front-end (i.e., to front-ends in the request 
primitive for which it does not yet maintain state). 

A configuration request contains a channel name, an authentication token 
(see below), and an optional set of preferred configurations. The client 
protocol entity copies the channel name, the token, and the preferred 
configurations from the front-end’s state. The state also indicates through 
which interface the protocol entity should transmit the request. 

The front-end react to the configuration request with a configuration 
response, which contains a status code, a channel name, and a description of 
the available configurations of a channel (including media server URIs, see 
Section 3.3.2). The status code either indicates that the request was 
successfully served (OK) or that the aggregator cannot deliver the channel 
(status code NotFound). The latter situation usually occurs because the 
aggregator does not have a forwarding agreement with the source of the 
channel (see Section 2.2.5). The client protocol entity returns the URI of 
the front-end that sent the response, the status code, and the configuration 
description to the client control point in a confirmation primitive. 

An authentication request contains the user’s ID, his credentials, and a 
proposal for an authentication refresh interval (see Section 3.3.1). The 
client protocol entity copies the user’s ID and his credentials from the 
request primitive and uses a default value for the refresh interval. The 
configuration discovery request primitive also indicates through which 
interface the client protocol entity has to transmit the request. 

A front-end reacts to an authentication request with an authentication 
response. The response contains a status code that indicates the outcome of 
the authentication request. The status code is OK if the front-end 
successfully authenticated the user and accepted the refresh interval in the 
request. In this case, the authentication response also contains an 
authentication token (see Section 3.3.1) that the ALIVE client protocol 
entity must include in any further requests it sends to the front-end. The 
ALIVE client protocol stores the authentication token and other 
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information about the front-end (e.g., the refresh interval and the interface 
through which it can be reached) in a block of state that represents the 
front-end and immediately sends a configuration request to the front-end (see 
above).  

The status code of an authentication request can also indicate that the 
front-end did not accept the refresh interval in the request (status code 
IntervalUnacceptable). In this case, the client protocol entity has to resubmit the 
authentication request. To ensure that the client protocol selects an 
acceptable refresh interval, the authentication response contains the range 
of refresh intervals that the front-end does find acceptable. 

The status code of an authentication response can furthermore indicate 
that the authentication request did not contain the user’s credentials 
(Unauthorized), in which case the client protocol entity has to resubmit the 
request with the user’s credentials. Another possibility is that the 
authentication response indicates that the front-end could not authenticate 
the user (status code Forbidden). In this case, the client protocol entity issues 
a configuration discovery confirm primitive with the same status code. This 
typically occurs when the aggregator does not have roaming agreement with 
the user’s home aggregator. 

The ALIVE client protocol entity uses a configuration discovery timer to 
cap the discovery process at the maximum value specified in a configuration 
discovery request primitive. When the client control point reinvokes the 
configuration discovery service during discovery, then it adds the value in 
the new request primitive to the current value of the configuration 
discovery timer. 

The discovery procedure ends when either all the front-ends that 
received a configuration request have reacted with a configuration response, 
or when the discovery timer expires. 

Capability Discovery 
Upon receiving a capability discovery request primitive, the client protocol 
entity transmits a capability request message to each of the front-ends in the 
request primitive. The request primitive also specifies through which the 
requests should be sent. 

Each front-end replies with a capability response, which contains a 
description of the front-end’s capabilities (see Section 3.4.5). The client 
protocol entity passes this information to the local control point in a 
capability discovery confirmation primitive, which also contains the URI of 
the front-end that sent the message. Notice that front-ends also server 
capability requests from unauthenticated users. 

Capability discovery ends when at the end of the maximum discovery 
time specified in the request primitive, or when every front-end has 
returned a capability response message. 
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Configuration Notification 
When the ALIVE client protocol entity receives a subscribe request 
primitive from the client control point, it sends a subscribe request message to 
known front-ends (i.e., front-ends for which the client protocol entity 
maintains state) and an authentication request to new front-ends (i.e., for 
which the protocol entity does not yet maintain state).  

A subscribe request message contains a token and a channel name. The 
client protocol entity copies the channel name from the subscribe request 
primitive and the token from the front-end state that a client protocol 
entity maintains. The front-end state also indicates through which interfaces 
the request should be sent. 

The front-end returns a subscribe response message that indicates if the 
subscribe succeeded. The client protocol entity passes the result to the 
client control point in a confirmation primitive. If the subscribe request 
fails, then this is typically because the front-end does support eventing 
(NotSupported status code), or because the request contained an invalid token 
(Unauthorized status code). 

The client protocol entity constructs an authentication request using the 
information in the subscribe request service primitive (interface name, user 
ID and credentials) and a default authentication refresh interval. The 
authentication procedure is the same as during configuration discovery (see 
above), except that an authentication response with an OK status code is 
followed by the transmission of a subscribe request message instead of a 
configuration request message. If the client protocol entity receives an 
authentication response with a Forbidden status code, then it pass this code to 
the client control point using a subscribe confirmation primitive. 

If the subscribe request was successful, the client protocol entity merely 
needs to wait for configuration notification messages from the front-end. A 
configuration notification message contains the name of the channel and a 
description of the available configurations in which the user can currently 
receive the channel from an aggregator. The client protocol entity passes 
this information plus the URI of the front-end that sent the message to the 
client control point in a configuration notification primitive. 

For provider-initiated notifications, the ALIVE client protocol entity 
regularly sends configuration requests to that front-end to get a description 
of the user’s current set of available configurations (e.g., together with a 
refresh request). To detect changes, the ALIVE protocol entity could add 
the most recent description of available configurations that it received to 
the front-end’s state (e.g., as a hash). It can then locally compare the 
configuration descriptions in the next configuration response with the 
stored version and pass a configuration notification primitive to the control 
point if there is a difference. 
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A subscribe request also contains the address of the switching controller, 
which enables it to also use a subscribe message to update its location at a 
front-end, typically after a handoff. 

Switching 
When the ALIVE client protocol entity receives a switch request primitive 
from the control point, it first checks how it needs to switch the mobile 
host to the target media server. If the switching strategy is break-before-
make, then the switching controller will first release the multimedia session 
with the target media server by sending a release request to it. If it is make-
before-break, then it will first send an establishment request to the target 
media server. The client protocol entity uses the URIs in the switch request 
primitive to transmit these messages. 

An establishment request contains the user’s token for the target 
aggregator (obtained from the front-end’s state) and a description of the 
intended actual configuration. A release request contains the user’s token 
for the current aggregator and a description of the actual configuration in 
which the mobile host was receiving the channel (both obtained from the 
front-end state). 

Media servers reply to an establishment request with an establishment 
response. Similarly, they use a release response to answer a release request. Both 
reponse messages carry a status code that indicates if the media server 
successfully executed the request. 

A switch ends when the client protocol entity receives an establishment 
response (break-before-make) or when it receives a release response 
(make-before-break). The client protocol entity passes the status code in 
the establishment response to the client control point in a confirmation 
primitive. The status code will be negative if the client protocol entity could 
not finish the switch in time. 

If the switching strategy is make-before-break and the client protocol 
entity receives an establishment response, then it waits until the end of the 
release delay before sending a release request message to the current media 
server. 

Refreshing Authentication State 
The client protocol entity uses a per-front-end refresh timer to refresh the 
user’s authentication state at a front-end. The value of the timer for a 
particular front-end is determined during the authentication request-
response with that front-end (see Configuration Discovery). 

When the refresh timer expires, the client protocol entity transmits a 
refresh request to the front-end. The refresh request carries the user’s token 
for the front-end. 
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The front-end replies with a refresh response, which indicates if the front-
end successfully refreshed the user’s authentication state (OK). If this is not 
the case, the switching controller either did not include a token, or it 
submitted the refresh request too late. The status code signals both cases 
through the same status code (Unauthorized). 

The ALIVE client protocol entity restarts the refresh timer for a 
particular front-end if it receives a positive refresh response from that 
front-end. 

3.6.3 Front-end Protocol Entity 

The ALIVE front-end protocol entity is the peer of the ALIVE client 
protocol entity. It maintains a block of state for each switching controller 
whose user it successfully authenticated. Each block contains information 
like the channel the mobile host is receiving and in which configuration, the 
authentication token, the refresh interval that the ALIVE client protocol 
entity uses, the user’s set of allowed (foreign) configurations, if the 
switching controller subscribed to configuration notifications, and so on. An 
ALIVE protocol entity on a mobile host keeps its block at a front-end of 
state alive through refresh request messages. The front-end protocol entity 
deletes this state if the mobile-side ALIVE entity does not provide a refresh 
request in time. 

Figure 3-19 shows that the front-end protocol entity contains a AAA 
bridge that interfaces with the front-end’s AAA server. The AAA bridge 
enables the front-end protocol entity to invoke the services of a AAA server, 
which is a local service to authenticate a user and to get a description of a 
user’s allowed (foreign) configurations. The AAA server also generates the 
user’s authentication token (see Section 3.3.1). We refer to Section 3.6.5 
for the AAA server’s interface specification. 

AAA
bridge

ALIVE front-end 
protocol entity

control point

ALIVE protocol AAA protocolAAA server
(foreign)

AAA server
(foreign)

 

Configuration Discovery 
When the ALIVE front-end protocol entity receives an authentication request, 
it first checks if the request includes the user’s credentials and if the refresh 

Figure 3-19. Internal 
organization of the front-
end protocol entity. 
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interval in the request is acceptable. If this is the case, the protocol entity’s 
AAA bridge invokes the services of the AAA server to authenticate the user. 

When the AAA server successfully authenticates the user, the front-end 
protocol entity creates a block of state that represents the user’s switching 
controller. The front-end protocol entity adds a description of the user’s 
allowed configurations and an authentication token to the block of state, 
thus essentially forming an authentication cache (see Section 3.3.1). The 
front-end protocol entity also adds the switching controller’s refresh 
interval to the block of state. Next, the protocol entity returns an 
authentication response to the client protocol entity, which includes the user’s 
token and a status code. 

The front-end protocol entity returns an authentication response with a 
Forbidden status code if the AAA server could not authenticate the user. If the 
refresh interval in the authentication request is unacceptable, then it returns 
an authentication response with a status code of IntervalUnacceptable. In this 
case, the authentication response also contains the range of refresh intervals 
that the front-end does find acceptable. If the request does not contain the 
user’s credentials, the protocol entity returns an Unauthorized response. 

If the front-end protocol entity receives a configuration request, it first 
checks if the token in the request matches the token in the switching 
controller’s block of state. If this is the case, the protocol entity passes an 
indication primitive to the front-end’s control point. The indication 
contains a description of a set of allowed configurations, specifically the 
intersection of the allowed configurations in the request (preferred 
configurations) and the allowed configurations that appear in the user’s 
block of state. The protocol entity also includes the user’s ID in the 
indication and the channel name from the configuration request message. 

When the protocol entity receives a configuration discovery response 
primitive, it constructs a configuration response messages and includes the 
description of the available configurations in the response primitive (which 
includes media server URIs) in the response message. The protocol entity 
also copies the status code in the response primitive into the configuration 
response message. If the control point indicates that it cannot deliver the 
requested channel, the status code is NotFound. 

The protocol entity does not generate an indication primitive if the 
configuration request includes an invalid token. In this case, the protocol 
entity returns a configuration response with an appropriate status code 
(Unauthorized). 

Capability Discovery 
If the front-end protocol entity receives a capability request, it generates a 
capability discovery indication primitive. When the local control point 
answers with a response primitive, the protocol entity copies the capability 
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description in the response primitive to a capability response message and 
sends it to the switching controller that sent the capability request message. 

Configuration Notification 
When the front-end protocol entity receives a subscribe request message 
from a switching controller, it first checks if the token matches. If this is the 
case, the protocol entity adds the channel name in the subscribe message as 
well as the set of preferred configurations in the message to the user’s block 
of state. Next, it returns a subscribe response with status code OK. If the 
token in the request does not match, the protocol entity returns an 
Unauthorized status code in the subscribe response. If the front-end does not 
support configuration notifications, it immediately returns a subscribe 
response with a NotSupported status code. 

When the front-end protocol entity receives a configuration notification 
request from the local control point, it checks which switching controllers 
have subscribed to receive notifications about the channel specified in the 
request and sends a configuration notification message to each of them. The 
configuration description in a particular notification messages consists of 
the intersection of the available configurations in the request primitive that 
match the ID of the user’s home aggregator (see Table 3-3) and the user’s 
allowed configurations (in the switching controller’s state). 

If the front-end protocol receive a subscribe message with a new IP 
address (typically after a handoff), then it updates the state of the 
corresponding switching controller with the new address. 

Refreshing Authentication State 
The front-end protocol entity maintains a refresh timer for each 
authenticated switching controller. When the front-end protocol entity 
receives a refresh request from a switching controller, it checks if the token 
matches and restarts the refresh time for that user. It then transmits a 
refresh response that indicates that the state was successfully refreshed. 

If the refresh timer times out, the front-end protocol entity deletes the 
state associated with the user. 

3.6.4 Media Server Protocol Entity 

When the ALIVE protocol entity on the media server receives an 
establishment request, it first checks with the front-end if the token is valid. 
If this is the case, it generates an indication primitive. The protocol entity 
copies the parameters in the indication from the establishment request 
(channel name, configuration description, and user ID).  

When the ALIVE protocol entity receives an establishment response 
primitive from the local control point, it returns the contents of the 
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primitive (a status code) to the switching controller in an establishment 
response message. 

Release requests are handled in the same way, except that the protocol 
entity immediately transmits a release response after it issued the release 
indication primitive. 

3.6.5 AAA Server 

A AAA server provides a combined authentication and authorization service. 
The service primitives described in this section define the interactions 
between the ALIVE media server protocol entity and the AAA server. Table 
3-8 shows the service’s primitives. 

 
Primitive Parameters 
Request User ID, credentials, description of preferred configurations (optional) 
Confirmation Success/failure, token, description of allowed (foreign) configurations (a subset of the 

preferred configurations, if any) 

The request primitive contains the user’s identity (e.g. bob@media-
forward.nl), the user’s credentials, and the description of a set of preferred 
configurations (optional). The resulting confirmation contains the outcome 
of the authentication/authorization (success or failure). If the outcome is 
positive, the confirmation contains a token and a description of the user’s 
allowed (foreign) configurations. 

If an authentication request fails, then this is usually because a user 
attempts to authenticate with a foreign aggregator that does not have a 
roaming agreement with the user’s home aggregator. 

Realization 
The authentication and authorization service mainly builds on user directories. 
Each front-end has one user directory, which contains an entry for each 
user that has a subscription with the aggregator. Each entry consists of a 
user identity (e.g., bob@media-forward.nl) and a description of the user’s 
allowed configurations, which are part of the delivery agreement between 
the user and the aggregator (see Chapter 2). A user directory is similar to 
the home location register in cellular networks such as GSM and UMTS 
[Køien03]. 

When the AAA server receives a request primitive, it first checks if the 
user’s identity appears in the local user directory. If this is the case, the AAA 
server authenticates the user locally. If the user is a foreign user (i.e., his 
identity does not appear in the user directory), then the AAA server 
delegates authentication to the AAA server of the user’s home aggregator 
(the home AAA server). For example, stream-it.com’s AAA server will 
attempt to authenticate Bob at his home aggregator (media-forward.nl) 

Table 3-8. Service 
primitives of the AAA 
server. 
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because Bob does not appear in stream-it.com’s user directory. The AAA 
server passes the result of the authentication to the ALIVE media server 
protocol entity in an authentication confirmation. 

The authorization part consists of simply retrieving the description of 
the user’s allowed configuration from the user directory. For foreign users, 
the AAA server gets a description of the user’s allowed configurations from 
his home aggregator, typically as part of the authentication procedure.  

The AAA server uses a confirmation primitive to return the result of the 
authentication and the description of the allowed (foreign) configurations 
to the ALIVE server protocol entity.  

AAA servers typically interact with each other through AAA protocols 
such as Diameter [Calhoun03]. The details of these interactions are 
however outside the scope of this work. The same goes for the internal 
operation of AAA servers (e.g., in terms of authentication mechanisms). 

3.6.6 Message Summary 

Table 3-9 summarizes the messages of the ALIVE protocol, their direction, 
and the information they carry. SC stands for Switching Controller, FE for 
Front-end, and MS for Media Server. 

 
Message Type Direction Data 

Request SC  FE User ID, password, refresh interval Authentication 
Response FE  SC Status code, token, refresh interval range 
Request SC  FE Channel name, token, description of preferred 

configurations (optional) 
Response FE  SC Status code, channel name, description of available 

configurations (including media server URIs) 

Configuration 

Notification FE  SC Channel name, set of available configurations 
(including media server URIs) 

Request SC  FE Channel name, token, IP address Subscribe 
Response FE  SC Status code 
Request SC  FE - Capability 
Response FE  SC Capability description 
Request SC  FE Token Refresh 
Response FE  SC Status code 
Request SC  MS Token, channel name, description of actual 

configuration 
Establishment 

Response MS  SC Status code 
Request SC  MS Token, channel name, description of actual 

configuration 
Release 

Response MS  SC Status code 

Table 3-9. ALIVE 
protocol messages, their 
direction, and the 
information they carry. 
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3.6.7 Typical Scenario 

Figure 3-20 shows a typical interaction of the ALIVE protocol using the 
example of Figure 3-1. The message exchange begins with when the client 
control point on Bob’s mobile host decides to initiate configuration 
discovery as a result of Bob moving into the 802.11 network of hotspot.nl 
(see Figure 3-1, point B). When this happens, Bob is receiving CNN TV 
from his home aggregator media-forward.nl via the UMTS network of 
connect-it.nl. 

The client control point initiates configuration discovery by calling the 
request primitive of the corresponding service. As a result, the client 
protocol entity transmits a configuration request to the front-end of media-
forward.nl. At the same time (but shown after the configuration response 
from media-forward.nl for readability), the client control point uses the 
connectivity handler to connect Bob’s mobile host to the 802.11 network 
of hotspot.nl. When the connection has been established, the client control 
point discovers local aggregator stream-it.com by calling the connectivity 
handler’s aggregator discovery service. In Figure 3-20, we represented the 
resulting protocol invocation as an aggregator discovery request-response 
interaction (e.g., piggy-backed on DHCP) with hotspot.nl’s aggregator 
directory.  

Next, the client control point obtains a description of stream-it.com’s 
capabilities by invoking the capability discovery service. As a result, the 
client protocol entity transmits a capability request to front-end of stream-
it.com. The description in the capability response is such that the client 
control point decides to reinvoke the configuration discovery service to add 
stream-it.com to the discovery procedure. Since the client protocol entity 
does not maintain any state on stream-it.com, it sends an authentication 
request to that aggregator’s front-end. However, the status code in the 
authentication response indicates that the client protocol entity proposed 
an unacceptable refresh interval in the request (IntervalUnacceptable). As a 
result, the client protocol entity resubmits the authentication request, this 
time with a refresh interval from stream-it.com’s acceptable range of 
refresh intervals (in the authentication response). The authentication 
response following this request indicates that Bob was successfully 
authenticated through a AAA interaction with Bob’s home aggregator. 

After that, the client protocol entity sends a configuration request to 
stream-it.com’s front-end. The configuration response contains a 
description of the available configurations in which Bob can receive CNN 
TV from stream-it.com. The available configurations are described in terms 
of Bob’s allowed configurations, thus extending Bob’s home environment at 
media-forward.nl to stream-it.com. 
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Based on the configuration response from stream-it.com, the client 
control point on Bob’s mobile host decides that stream-it.com can deliver 
CNN TV in a better configuration. As a result, it switches the mobile host 
to one of stream-it.com’s media servers by invoking the switching service. 
In this example, the client control point requests a break-before-make 
switch, which means that the client protocol entity first releases the 
multimedia session with the current media server at media-forward.nl and 
then establishes a session with a target media server of stream-it.com. 

The switch completes when the client protocol entity receives an 
establishment response from the target media server. At that point, the 
mobile host is receiving CNN TV from one of stream-it.com’s media 
servers via the 802.11 network of hotspot.nl. 

Notice that the switching controller interacts with stream-it.com via the 
802.11 network and with media-forward.nl via the UMTS network. 
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3.7 Implementation of the ALIVE Protocol 

The ALIVE protocol of Section 3.6 requires one or more underlying 
transport protocols to convey the ALIVE protocol messages. The transport 
protocol between a switching controller and a front-end will typically be a 
single ubiquitously available protocol, while multiple transport protocols 
may be required to connect a switching controller to the media servers 
(e.g., SIP, RTSP, and WindowsMedia servers) of aggregators. 

In this section, we consider an implementation of the ALIVE protocol 
that is based on a single transport protocol, specifically the Session 
Initiation Protocol (SIP) [Rosenberg02a]. We implemented the provider-

Figure 3-20. Typical 
interaction.  
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initiated notification service, but did not implement the configuration 
notification service that involves explicit notification from front-ends. We 
also did not implement the capability discovery service.  

We first explain why we used SIP to implement the ALIVE protocol 
(Section 3.7.1) and briefly introduce the notion of a transaction, which is 
SIP’s basic form of interaction (Section 3.7.2). After that, we explain the 
mapping of ALIVE messages to SIP messages (Section 3.7.3) and discuss 
the configuration discovery part of the ALIVE protocol (Section 3.7.4) as 
well as the part that executes a switch (Section 3.7.5). We conclude this 
section with the description of a small-scale testbed in which we deployed 
the implementation (Section 3.7.6). 

3.7.1 Session Initiation Protocol 

The Session Initiation Protocol (SIP) [Rosenberg02a] is an application-level 
signaling protocol for establishing, modifying, and tearing down multimedia 
sessions in the Internet. It uses textual messages, which typically carry a 
payload that describes multimedia sessions. SDP (see Section 3.3.2) is one 
of the languages that can be used for such descriptions. 

We used SIP to realize the ALIVE protocol for the following reasons: 
– SIP is typically used to convey descriptions of multimedia sessions 

(descriptions of available configurations, in our case), for instance to 
get a description of the other party’s capabilities [Rosenberg02b]; 

– SIP can be run on top of UDP. The advantage of using UDP is that 
UDP messages can be sent right away without having to wait for a 
connection to be established (e.g., a TCP connection), which allows 
a switch to take place more quickly. The disadvantage of using UDP 
is that it limits the number of configuration descriptions that can be 
transferred to the maximum size of a UDP packet. In this thesis, we 
assume that the configuration descriptions that a mobile host 
receives from an aggregator fit into one UDP packet; 

– SIP reliably transfers messages and provides transaction management 
(e.g., to be able to match different configuration responses with the 
corresponding requests); 

– SIP can be used to refresh softstate (in our case the state maintained 
by ALIVE front-end protocol entities) [Donovan02]; 

– SIP provides hooks for shared secret user authentication; 
– SIP’s main purpose is to set up multimedia sessions, which enables 

mobile hosts to also use SIP to establish a multimedia session with a 
media server. This reduces the number of protocols in the system, 
thus reducing the system’s complexity. We do however stress that 
aggregators can also use other session control protocols on their 
media servers (e.g., RTSP [Schulzrinne98] or WindowsMedia); 
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– It seems that SIP will eventually become a ubiquitously available 
protocol that is used for many purposes. SIP has for instance been 
adopted as the signaling protocol for UMTS multimedia sessions 
[Wong03]; 

– SIP is reasonably bandwidth efficient compared to the relatively high 
bandwidth levels that streaming applications usually require; and  

– SIP uses textual messages, which are easier to extend, process, and 
debug than binary encoded messages. 

Finally, SIP can also be used to extend the ALIVE protocol beyond its 
current capabilities. SIP eventing [Roach02] could for instance enables the 
control points of aggregators to push configuration notification messages to 
interested mobile hosts. SIP is currently also being extended with support 
for public key authentication [Peterson03]. 

3.7.2 SIP Transactions 

SIP interactions are organized in so-called transactions. A transaction is a 
sequence of SIP messages that begins with a SIP client transmitting a request 
to a SIP server. The SIP server responds with zero or more so-called 
provisional responses followed by one final response. A provisional response 
informs the client that the server is handling the request, while a final 
response indicates that the server has executed the client’s request. 
Depending on the type of request, clients confirm the receipt of a final 
response by transmitting an acknowledgement (an ‘ACK’) to the server. 
Figure 3-21 shows this basic behavior. 

SIP server

provisional responses 

request 

SIP client 

ACK 

final response 

 

Transaction Types 
SIP supports two types of transactions: invite transactions and non-invite 
transactions. An invite transaction is a transaction that begins with an INVITE 
request, which is the request type that SIP for instance uses to establish a 
multimedia session or to requests another party’s capabilities 
[Rosenberg02b]. A non-invite transaction, on the other hand, starts with a 
request messages that is not an INVITE. These for instance include 

Figure 3-21. Basic SIP 
transaction. 
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OPTION requests (another means to ask a SIP server for its capabilities), 
and SUBSCRIBE requests (to subscribe to event notifications) [Roach02]. 
In our implementation, we only used invite transactions. 

A SIP client involved in an invite transaction issues an ACK when it 
receives a final response from a server. Non-invite transactions do not 
involve an ACK. Strictly speaking, an ACK is not part of an invite 
transaction if the final response is a 200 OK (see below), while an ACK is 
part of the transaction for other final responses. 

Response Types 
SIP supports different types of provisional and final responses. The type of a 
response is determined by its status code, which is an integer number 
between 100 and 699. A provisional response has a status code between 
100 and 199, while the status code of a final response falls in the range 
200-699. 

The most important status code is 200 (OK). A response with this status 
code signals that the server has successfully executed the request of the 
client (e.g., an INVITE request). An example of a provisional status code is 
100 (Trying), which informs the client that the server is trying to execute its 
request. All other status codes indicate the client needs to redirect its 
request to another SIP server (300-399), or that the SIP server could not 
serve the client’s request (400-699). 

Dialogs 
SIP transactions take place in the context of a dialog, which is a signaling 
association between a SIP client and a SIP server. A dialog is identified by a 
tuple of three random numbers. Each SIP message contains the identifier of 
the SIP dialog to which it belongs in the form of three protocol headers (To 
tag, From tag, and Call ID, see RFC 3261 for details).  

Transactions within a dialog are identified by the dialog’s identifier and 
a sequence number. Every new transaction has a sequence number that is 
one higher than the transaction before it. Like the dialog identifier, every 
SIP message also carries the sequence number of the transaction (CSeq 
header). 

Dialogs are established through INVITEs. The INVITE that triggers the 
establishment of a dialog is called an initial INVITE. INVITEs that are sent 
across an existing dialog are referred to as re-INVITEs. 

3.7.3 Messages 

Table 3-10 shows the mapping from ALIVE to SIP messages. To reduce the 
switching delay, we piggyback messages onto each other (e.g., a 
configuration request on an authentication request). 
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ALIVE protocol message Also carries SIP message 
Authentication request Configuration request INVITE 
Authentication response Configuration response 200 (OK), 401 (Unauthorized), 403 

(Forbidden), 404 (NotFound), or 422 
(IntervalTooShort) 

Configuration request Refresh request Re-INVITE 
Configuration response Refresh response 200 (OK) or 401 (Unauthorized) 
Refresh request Configuration request Re-INVITE 
Refresh response Configuration response 200 (OK) or 401 (Unauthorized) 
Establishment request - INVITE 
Establisment response - 200 (OK) or 401 (Unauthorized) 
Release request - BYE 
Release response - 200 (OK) or 401 (Unauthorized) 

3.7.4 Configuration Discovery 

Figure 3-22 shows the typical discovery behavior of the ALIVE protocol 
when the client control point invokes the configuration discovery service, in 
this case at point B of Figure 3-1.  
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200 OK
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Observe that the switching controller on Bob’s mobile host can interact 
with hotspot.nl and media-forward.nl (via UMTS) simultaneously. Figure 3-
22 only shows these interactions sequentially for readability. Also notice 
that Figure 3-22 does not show the AAA interactions between stream-it.com 

Table 3-10. Mapping of 
ALIVE messages to SIP 
messages. 

Figure 3-22. Typical 
discovery behavior of 
the ALIVE protocol. /* 
change: add handoff */ 
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and media-forward.nl to authenticate Bob. We will discuss the switching 
part of Figure 3-22 in Section 3.7.5. 

INVITEs 
An INVITE is a combined authentication-configuration request and also 
establishes a dialog with a front-end. The client protocol entity transmits an 
INVITE to front-ends with which it has not authenticated the user, in Figure 
3-22 to the front-end of stream-it.com (via the host’s 802.11 interface). 

Each INVITE contains the user’s ID in the From header and the user’s 
credentials in the Authorization header [Rosenberg02a]. An INVITE also 
contains SDP with the name of the channel the user wants to receive in the 
s= field. The SDP may contain a description of a set of allowed 
configurations (the preferred configurations). 

The SDP is ‘inactive’, which means that the last line in the SDP payload 
is an a=inactive line. The a=inactive line informs an aggregator that the SDP 
describes capabilities rather than a particular configuration in which the 
aggregator should begin to stream the channel. This mechanism is similar to 
the SDP offer/answer model standardized by the IETF [Rosenberg02b]. 
However, unlike [Rosenberg02b], we use this mechanism in a multiparty 
fashion because a client protocol entity will generally query multiple 
aggregators at the same time. 

An INVITE furthermore contains Session-Expires header [Donovan02], 
which the ALIVE protocol entity on the mobile host uses to propose an 
interval for refreshing the user’s authentication state at a front-end (see 
Section 3.6.2). 

Re-INVITEs 
A re-INVITE is a combined configuration-refresh request. The client 
protocol entity sends a re-INVITE to a front-end to query it for its available 
configurations (i.e., as a configuration request) when it has already 
authenticated the user with that aggregator. In the scenario of Figure 3-22, 
the client protocol entity transmits the re-INVITE to media-forward.nl (via 
the host’s UMTS interface). Since a re-INVITE also acts as a refresh 
message, the ALIVE front-end protocol entity refreshes a user’s state when 
it receives a re-INVITE. 

Re-INVITEs contain the same type of information as INVITEs, except 
that a user’s credentials are replaced by an admission token. A re-INVITE 
also contains ‘inactive’ SDP. 

The client protocol entity also regularly transmits re-INVITEs as refresh 
requests (cf. [Donovan02]). In this case, the re-INVITE also acts a 
configuration request. The length of the transmission interval is aggregator-
specific. For simplicity, we have omitted the regular re-INVITEs from 
Figure 3-22. 
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200 OKs 
A front-end protocol entity responds to an INVITE with a 200 OK if it has 
successfully authenticated the user and has accepted the proposed refresh 
interval in the INVITE. A 200 OK is thus a positive authentication-
configuration response message. A 200 OK also establishes a SIP dialog 
between the switching controller and the front-end. 

A 200 OK contains the refresh interval in the Min-SE header 
[Donovan02] and an admission token in the Admission-Authorization-
Token header (cf. the P-Media-Authorization-Token of [Marshall03]).  

The 200 OK’s SDP is also ‘inactive’ and contains the name of the 
channel, a description of the user’s potential configurations, and URIs to 
media servers. Figure 3-23 shows an example for channel CNN Radio. 

s=CNN Radio
…
m=audio 0 RTP/AVP 96 98
a=rtpmap:96 G7221/16000
a=fmtp:96 bitrate=24000
a=sip:server1.stream-it.com
a=rtsp://server2.stream-it.com
a=rtpmap:98 MP4A/LATM/8000
a=fmtp:98 bitrate=6000
a=sip:server1.stream-it.com
a=inactive

configuration 
plus media 
server URIs

mark SDP 
as ‘inactive’  

Aggregators react to a re-INVITE with a 200 OK if they have successfully 
re-authenticated the user, either if the re-INVITE represents a 
configuration request (with a piggybacked refresh request) or if it 
represents a refresh request (with a piggybacked configuration request). 
These 200 OKs contain the same sort of information as a 200 OK to an 
INVITE. 
The SDP in a 200 OK that is the result of regular re-INVITE (i.e., a refresh 
request with a piggy-backed configuration request) enables a client protocol 
entity to regularly detect changes in a user’s set of potential configurations 
(‘polling’). A more efficient and timely approach would be to use an 
announcement protocol [Roach02] (i.e., realize the eventing service of 
Section 3.4.5), but the use of such a protocol in the ALIVE system is an 
item of future work. 

The request-response procedure of the ALIVE protocol is similar to that 
of SDP’s offer/answer model [Rosenberg02b]. 

401, 403, 404, and 422 Responses 
The ALIVE protocol uses four error responses (in general, SIP error 
responses lie in the range 300-699):  

Figure 3-23. ‘Inactive’ 
SDP description of 
potential configurations. 
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– 401 Unauthorized: the INVITE does not contain the user’s 
credentials; 

– 403 Forbidden: the aggregator cannot authenticate the user, typically 
because the aggregator does not have a roaming agreement with the 
user’s home aggregator; 

– 404 Not Found: the aggregator cannot deliver the channel for which 
the client protocol entity requests potential configurations (usually 
because the aggregator does not have an agreement with the source 
from which the channel originates); and 

– 422 Session Interval Too Small: the aggregator requires a larger 
refresh interval. 

Figure 3-24 illustrates that a 401 and a 422 response cause the client 
protocol entity to resubmit the request with other information. As a result, 
a client protocol entity might be involved in multiple SIP transactions 
before it receives a 200 OK. In the example of Figure 3-24, the first 
INVITE to stream-it.com does not contain the user’s credentials. The 
aggregator responds to that INVITE with a 401 Unauthorized 
[Rosenberg02a] asking the client protocol entity to resubmit the INVITE 
with the user’s credentials. The second INVITE in Figure 3-24 contains 
these credentials, but stream-it.com considers the proposed refresh interval 
too small. Stream-it.com therefore returns a 422 Session Interval Too Small 
to the client protocol entity, which contains its minimum acceptable refresh 
interval in the 422’s Min-SE header [Donovan02]. The third INVITE 
contains all the necessary information and results in a 200 OK. Observe 
that the response to the second INVITE may have been a 403 Forbidden if 
the aggregator could not authenticate the user. This would have ended the 
interaction as well, but with a negative outcome. 
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3.7.5 Switching 

To switch between SIP servers, the client protocol entity transmits an 
INVITE to the target media server and a BYE to the current media server. 
Figure 3-24 illustrates this at point B in Figure 3-1 for a break-before-make 
switch. The INVITE and the BYE contain the Admission-Authorization-
Token so that the media servers can verify that the user has been 
authenticated. The SDP payload contains the name of the channel and a 
description of the selected ‘best’ configuration of the channel. The SDP 
must not contain an a=inactive line. 

A 200 OK response from the target media server indicates that the 
media server is transmitting the channel to the mobile host. 

Change of IP address 
Depending on the signaling protocol, the client protocol entity may be able 
to reuse an existing signaling association with a media server if it executes 

Figure 3-24. Multi-
round configuration 
discovery interaction 
with an aggregator. 
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an intra-media server switch (i.e., the target media server is the same as the 
current media server). SIP for instance enables mobile hosts to change the 
address of a mobile host without tearing down the signaling association 
(e.g., using the Contact header in a SIP re-INVITE messages 
[Wedlund99]). Of course, the media forwarder on the media server that 
transmits the actual multimedia packets (see Section 3.4.3) must also be 
able to deal with such address changes. 

3.7.6 Testbed 

We realized the SIP implementation of the ALIVE protocol using the Open 
SIP stack (version 1) [OpenSIP]. The Open SIP stack is written in C and 
also contains an SDP parser. 

Figure 3-25 shows the small-scale testbed in which we deployed the 
implementation. Our objective was to realize inter-aggregator switches 
using multiple networks. The main components of the testbed are a laptop, 
an aggregator server, a Radius server (not shown in Figure 3-25), a fixed 
Ethernet, an 802.11 network, and a UMTS network. The laptop represents 
a mobile host in the ALIVE system and is equipped with an 802.11 
interface (an Orinoco 802.11b Gold card), a fixed Ethernet interface, and a 
UMTS interface (via Bluetooth over USB). The aggregator server ‘hosts’ 
three aggregator domains and connects to the fixed part of the network. 
The Radius server represents a user’s home aggregator and is based on the 
software of the Free Radius project [FreeRadius]. The Ethernet, the 802.11 
LAN, and the UMTS network are three different subnets and represent 
three different access providers. All the machines the testbed use Linux. 
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Aggregator Server 
The aggregator server ‘hosts’ three aggregator domains in the form of three 
processes that each represent a front-end. Each process is bound to one 
network (Ethernet, UMTS, or 802.11) and consists of a control point and 
the ALIVE protocol (see Section 3.7) on top of a SIP user agent server. We 
bound the front-ends to a network by appropriately configuring the laptop 
(i.e., we did not use a protocol like DHCP to discover the front-ends). The 
front-end control points are virtually empty in our implementation and are 
an item of future work. 

The front-end processes authenticate users with the Radius server and 
communicate with that server via the Ethernet. We configured the Radius 
server such that it returns a description of a user’s allowed configurations if 
it can authenticate a user. We did however not implement the conversion 
to the configurations supported by the three foreign front-ends (i.e., the 
virtual environment of home configurations), which would be a task of the 
front-ends’ control points. 

The aggregator server also contains a process that runs the well-known 
video conferencing tool VIC [VIC] as a multimedia server. The three front-

Figure 3-25. Testbed. 
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ends use the VIC process to deliver a channel, which means that the three 
aggregators essentially use a shared pool of media servers. Of course, this is 
a situation that will not occur in practice. 

To deal with IP addresses changes, we extended VIC such that the 
front-end processes can dynamically change the IP address to which the 
VIC server sends it packets. The extension also enables the front-ends to 
dynamically change the actual configuration in which VIC transmits a 
channel, specifically by changing the bitrate of the stream, its framerate, and 
its ‘quality’ (the latter is a VIC-specific metric). 

Laptop 
The laptop runs three processes, one of which executes the client control 
point and the client-side of the ALIVE-over-SIP protocol. The other two 
processes execute VIC (as a client) and a mobility manager [Peddemors04] 
that keeps track of the state of the laptop’s network interfaces (e.g., which 
interfaces currently have link-layer connectivity). We attached the Open SIP 
software to a library that enables the stack to transmit a specific SIP 
message via a specific interface. This also required us to create three routing 
tables on the laptop, one for each of the laptop’s interfaces. We 
furthermore modified VIC such that it can receive a multimedia stream via 
a specific interface. 

The mobility manager sends events to the client protocol software (e.g., 
network disconnects), which then result in the ALIVE protocol being 
executed. For example, unplugging the Ethernet cable (see Figure 3-25) will 
result in the mobility manager informing the client control point that the 
Ethernet connection has gone down. As a result, the control point on the 
mobile host will invoke the ALIVE-over-SIP protocol to discover the 
available configurations of the aggregators bound to the 802.11 network 
and the UMTS network. After collecting their responses, the client control 
point for instance decides to switch to the aggregator bound to the wireless 
LAN, which means that it sends an establishment message (an INVITE) to 
it via the 802.11 network. This message configures the VIC server with the 
address of the laptop’s wireless LAN interface instead of with the laptop’s 
Ethernet interface and also changes the configuration in which the server is 
transmitting a channel.  

3.8 Related Work 

Several papers in the literature consider hosts that switch from one server 
machine to another (e.g., [Dutta02, Trossen03, Roy02, Xu00, Kim01]), 
but most of them do not investigate switches between the servers of 
different access-controlled domains (i.e., inter-aggregator switches). The 
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exception is [Trossen03], but their business network is application-neutral 
and is not based on agreements. In addition, their system puts most of the 
switching responsibilities in access routers instead of on mobile hosts. 

The ACT Framework 
Trossen and Chaskar [Trossen03] consider mobile hosts that need to 
dynamically connect to or switch between application-specific services (e.g., 
a transcoder) after an IP-level handoff (e.g., controlled by Mobile IP or 
SIP). Their value chain (discussed in the form of three scenarios) is 
comparable to ours. It consists of content sources, Supplementary Service 
Providers (SSPs), and wireless network operators. SSPs are comparable to 
our aggregators, except that SSPs are application-neutral, while our 
aggregators are specific to the distribution of real-time multimedia content. 
Similar to the aggregators in our model, SSPs can also be bound to specific 
network operators, in which case mobile hosts must be able to switch to 
another SSP when they leave a network operator’s coverage area. A 
difference with our model is that content sources can also be bound to 
network operators, which is a case that we do not consider. Unlike our 
work, they do not consider agreements. 

Trossen and Chaskar propose a framework that enables mobile hosts to 
switch between (or connect to) application-specific services such as those 
provided by their SSPs. Their Application Context Transfer (ACT) 
framework revolves around the notion of an application context, which is a 
block of application-specific information (e.g., an SDP description of a 
multimedia session) that is stored in the access router to which the mobile 
host attaches. In the event of a handoff, this router transfers the context to 
the host’s new access router, which uses the information to decide how to 
continue the session. Trossen and Chaskar discuss several message sequence 
diagrams that suggest how the new access router can accomplish this. For 
example, if the mobile host was receiving a multimedia stream through a 
proxy server, then the new access router can decide to set up a bi-
directional tunnel with the proxy so that the stream from the source will 
continue to flow through the proxy. Another possibility is that the new 
access router is responsible for discovering another source that provides the 
same content, for instance when the mobile host’s current source is 
unavailable through the new access router (e.g., because the new access 
router belongs to another network operator).  

While the ALIVE and ACT value chains are similar, the underlying 
systems are completely different. The main difference is that the ACT 
framework realizes its functions (e.g., discovery of SSPs) in access routers, 
while the ALIVE system puts these functions on mobile hosts. As a result, 
the ACT framework requires a more advanced and more complex router 
infrastructure (e.g., to maintain application-level state and to interact with 
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other access routers or sources). The ALIVE system requires no additional 
features from routers, which keeps the network simple. An advantage of the 
ACT approach is that it integrates with Mobile IP into a single solution. 
Finally, the ACT framework may also involve per-user interactions between 
the new access router and the content source, which might negatively affect 
the scalability of the system when delivering real-time multimedia content 
to a large number of mobile users (server implosion). 

MarconiNet 
The MarconiNet system of Dutta et al. [Dutta02] consists of affiliate 
domains that receive streams from radio or TV broadcasters and forward 
them to mobile hosts using a set of media servers. Each media server is 
responsible for one subnet and delivers streams to mobile hosts through 
locally scoped IP multicast groups. Mobile hosts switch from one server to 
another by switching to another multicast group. In [Dutta02], the authors 
discuss a signaling protocol that realizes such handoffs in combination with 
DiffServ-based QoS control. Like our system, MarconiNet runs in a 
managed environment with agreements between affiliates and radio or TV 
broadcasters. Their affiliates are similar to our aggregators. One of the main 
differences with our work is that Marconinet only considers handoffs 
between servers of the same affiliate and that they do not explicitly 
distinguish application and network-level roles. As a result, they miss most 
of the agreements of our model (e.g., application-level roaming 
agreements). Other differences are that we explicitly consider multi-homed 
mobile hosts and that their approach does not include the notion of a 
configuration. Our system therefore differs considerably from theirs. We do 
however not cover security issues, which Dutta et al. do. 

Switching Between Transcoders 
Roy et al. [Roy02] discuss a system that enables mobile hosts to seamlessly 
switch between two transcoding servers. They accomplish this by migrating 
the state of a transcoding session (e.g., information to reconstruct the next 
frame from the source at the target transcoder) from one server to another. 
The authors discuss three types of inter-server protocols that can be used 
for this purpose. We consider this work complementary to ours. 

Internet Media Guides 
Our work can also be considered from an Internet Media Guide (IMG) 
perspective [Nomura03]. The MMUSIC group of the IETF is currently 
looking into a framework for the distribution of IMGs to a potentially large 
number of (mobile) users. They define an IMG as a structured set of 
descriptions of multimedia sessions (e.g., in SDP) and distinguish IMG 
senders, IMG transceivers, and IMG receivers. An IMG transceiver receives 
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IMGs from senders, optionally modifies the IMGs, and forward them to 
IMG receivers. In our work, a multimedia session is a multimedia channel 
being transmitted at a certain configuration. Sources are IMG senders, 
aggregators are IMG transceivers, and mobile hosts are IMG receivers. 
Aggregators can be considered IMG transceivers because they bundle 
channels from sources and because they can offer channels to mobile users 
at other configurations than the sources from which they receive the 
channels (see Section 2.2). The work we presented in this thesis addresses 
at least two of the requirements in [Nomura03]. First, [Nomura03] 
requires that IMG receivers are allowed to communicate with multiple IMG 
senders simultaneously. Our (multi-homed) mobile hosts communicate 
with multiple IMG senders because aggregators are IMG transceivers and 
IMG transceivers are also IMG senders. A second requirement is that it 
must be possible to deliver customized IMGs to receivers. The front-ends 
of our aggregators do exactly this because they determine sets of available 
configurations on a per-user basis (albeit limited by the configurations that 
an aggregator supports). 

ServiPoly 
Like in our work, Xu et al. [Xu00] also consider the delivery of multimedia 
services in multiple configurations (they call this feature service 
polymorphism). In their ServiPoly system, clients request a multimedia 
service from a server. Clients include their available resources in the request 
(e.g., battery power and available bandwidth), which servers use to select a 
service configuration. Servers then deliver such a service configuration 
directly or through an intermediary proxy server. Proxy servers may be part 
of different domains and are therefore comparable to our media servers. 
While it is not the main focus of their paper, Xu et al. suggest that mobile 
hosts can handoff to a proxy server of another intermediary domain by 
resubmitting their request for a multimedia service. The original server (or 
a replica thereof) would then select a new configuration and a new proxy 
server for the client. This is similar to our system, except that their servers 
possess most of the intelligence that we put on mobile hosts. ServiPloy 
furthermore delivers configurations tailored to individual clients, which is 
probably less scalable for live multimedia channels with a large number of 
receivers. 

Distributed HTTP Proxies 
Kim, Lee, and Chung [Kim01] discuss a system of distributed proxy servers 
that deliver web pages from a web server to mobile hosts. The proxies are 
responsible for transcoding (e.g., reducing the size of resolution of images) 
and caching and each serve a specific set of base stations. The latter means 
that mobile hosts need to switch to another proxy server when they leave 
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their current proxy’s service area, which is something that may happen in 
the middle of an HTTP session (i.e., when the mobile host is receiving a 
web page).  

Mobile hosts are responsible for switching to another proxy. They use a 
table to map the ID of a base station to a proxy server and initiate the 
switch by sending a handoff message to the target proxy server. The handoff 
message contains the HTTP request that the mobile host used to start the 
HTTP session with the old proxy server, the URLs of the files that the host 
was able to receive from the old proxy, and the number of bytes it received 
of each file. This information enables the target proxy server to determine if 
the mobile host has received all the files associated with the web page it 
requested from the old proxy.  

The target proxy can retrieve transcoded images that the mobile host 
has not yet received from the old proxy. Proxy servers exchange such 
images through synchronization request and response messages. 
Alternatively, a proxy server may go directly to the web server to retrieve 
missing files. 

The main difference between the work of Kim et al. and our work is 
that their work lacks a well-defined business network (cf. Chapter 2). 
Another major difference is that they focus on HTTP communications 
rather than on real-time streaming, which yields completely different 
system requirements. Handoff delay, for example, is less of an issue in their 
system than in our system (they reported average handoff delays in the 
range from 5 to 20 seconds). Another difference is that our system builds 
on standard IETF protocols, while their handoff and synchronization 
messages do not seem to follow a standard. Kim et al. do however cover 
state transfer between proxy servers (cf. [Roy02, Trossen03]), which is 
something that we have not considered. 

The main similarities are that they also use a system of distributed proxy 
servers to deliver information to mobile hosts. In addition, their design also 
seems to put most of the system’s intelligence on mobile hosts, although 
they do not specifically articulate that. 

Switching on the Fixed Internet 
Karrer and Gross [Karrer01] discuss an application-level system that 
enables fixed Internet clients to switch between (proxy) servers that produce 
the same video stream. They consider such switches an alternative to a 
server adapting a video stream itself (e.g., by dropping frames). In their 
system, clients are responsible for switching to another server and also for 
detecting events that may lead to such a switch.  

The primary goal of the work of Karrer and Gross is to enable clients to 
transparently switch between servers. To accomplish this, they investigate 
how they can offer a constant data stream to a client’s player during a 
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switch. They assume that a stream consists of a sequence of numbered 
packets and that servers use the same numbering for the same stream. 

Karrer and Gross’ solution uses clients that first store the packets they 
receive in a queue and then feed them to a video player. Their central 
notion is that of a start packet, which is the first packet that a client wants 
to receive from a target server. A client informs a target server of the 
number of its desired start packet when it initiates a switch to that server. 

Start packets can be used to repair packet loss incurred by the stream 
coming from the old server. A client could for instance ask the target server 
to begin with a packet that the client is about to play back (i.e., more at the 
head of the queue), which would give the client the opportunity to receive 
any lost packets from the target server. Conversely, if a client hardly looses 
any packets from the old server, then it may request the target server to 
begin with a packet that is further away from being played back (i.e., more 
toward the queue’s tail). This would reduce the number of duplicate 
packets, which reduces bandwidth consumption but offers less opportunity 
to restore missing packets. Observe that clients may decide to temporarily 
receive a same stream from the old server as well as from the new server to 
improve the quality of the switch. 

The continuity of the stream arriving at a client is furthermore 
influenced by the delay between the client and the target server. The 
authors demonstrate this by having a client in Europe switching between a 
server in the US and a server in South America. 

Karrer and Gross use start packets in combination with the delay 
between the client and the target server to develop four switching policies. 
One of these policies says that if packet loss on the path from the old server 
is ‘high’ and the delay to the target server is ‘large’, then the client should 
use a start packet that is currently at the head of the queue. 

The work of Karrer and Gross differs form our work in that they only 
consider switches between servers instead of between access-controlled 
domains (our aggregators). In addition, they only consider the switches 
itself and not the signaling interactions that precede it (e.g., to discover 
which servers are available and which streams they offer). 

Others 
Hsieh et al. [Hsieh03] discuss a receiver-oriented TCP-clone that is able to 
hand a TCP connection off from one server to another. While they also 
consider multi-homed mobile hosts, their work is at the transport layer, 
which makes it quite different from ours. 

[Snoeren01b, Sultan02] consider handoffs between servers for other 
reasons than mobility, for instance to increase the availability of a service 
(e.g., handoff to another server when the current server gets overloaded). 
They transfer TCP state (e.g., the sequence number of the last successfully 
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acknowledged data segment) and some application-level state to resume a 
TCP connection (e.g., for HTTP applications) at the target server at exactly 
the same place where it left off at the original server. A similarity with our 
work is that the clients in [Snoeren01b] are responsible for selecting a 
target server just like our mobile hosts are responsible for selecting a target 
configuration, aggregator, and media server.





 

 

Chapter 4 

4. Analysis 

In this chapter, we analyze overhead of the ALIVE protocol, specifically in terms of 
the extra delay it introduces. We concentrate on environments with 802.11 hotspots, 
where the ALIVE protocol typically comes into play at the edge of an 802.11 cell. At 
these edges, we experiment with the delays introduced by the ALIVE protocol, which 
may be substantial as a result of the exponential back-off retransmission scheme used 
by the Session Initiation Protocol (SIP) to recover from packet loss. As we have seen in 
Chapter 3, we implemented the ALIVE protocol as a thin protocol layer on top of SIP. 

We first outline our approach (Section 4.1) and take a look at the different types 
of delays involved in a typical switch (Section 4.2). Next, we discuss our experiments, 
which concentrate on the retransmission behavior of SIP transactions under various 
802.11 network conditions (Section 4.3). After that, we describe our measurement 
set-up (Section 4.4) and discuss the results of our experiments (Section 4.5). We 
conclude this chapter with a description of related work (Section 4.5.7). 

4.1 Goal and Approach 

The goal of our analysis is to determine the overhead introduced by the 
ALIVE protocol in a contemporary network environment consisting of 
802.11 hotspots and overlaying UMTS or GPRS networks [Køien03, 
Banerjee04, Zhuang03]. We do not consider alternative hotspot 
technologies such as HIPERLAN [Doufexi03], GSM micro-cells 
[Tripathi98], and infrared [Brewer98]. 

We zoom in on mobile hosts that receive a channel via their 802.11 
interface and execute a switch as a result of moving into the coverage area 
of another 802.11 access provider. The reason for concentrating on this 
type of scenario is that it might result in a mobile host being unable to 
receive the channel for an extended period of time. This has two causes: 

– An 802.11 handoff (in this case to an access point of the target 
802.11 access provider) temporarily disconnect the mobile host 
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from the 802.11 infrastructure [Velayos03, DeCleyn04, Vatn03, 
Mishra03]; and 

– Before initiating the switch, the switching controller on the mobile 
host will first invoke the ALIVE protocol to discover the available 
configurations of local aggregators on the target network 
(configuration discovery). As a result, the mobile host will be 
temporarily disconnected from the aggregator infrastructure as well. 

The detachment from the aggregator infrastructure may last for quite 
some time because the execution of the ALIVE protocol at the edge of the 
target 802.11 network may introduce significant delays. This is because 
802.11 links are known to be lossy under certain circumstances 
[Eckhardt96, Hoene03, Aguayo04, Punnoose01] and because we 
implemented the ALIVE protocol on top of SIP. SIP uses an exponential 
back-off retransmission scheme to recover from packet loss [Rosenberg02a] 
and uses a default back-off time of 0.5 seconds. Observe that overlay 
networks such as UMTS or GPRS typically do not trigger SIP 
retransmissions as a result of packet loss because they use a semi-reliable 
link-level protocol (the Reliable Link Protocol, RLP [Banerjee04]). 

As a result of the 802.11 handoff and the delay introduced by the ALIVE 
protocol, there is a risk of the mobile host’s playout buffer (see Section 3.2) 
depletes before the switch completes. To avoid this situation, the delay 
introduced by the 802.11 handoff plus the delay of the ALIVE protocol 
must be smaller than or equal to the amount of audio and video in the 
playout buffer (in seconds). If this is the case, then we speak of a smooth 
switch, which means that the playout buffer can continue to feed packets to 
the player during and after the switch (cf. [Karrer01]). 

Figure 4-1 shows an example of the type of scenario we focus on in this 
chapter. The example is an extension of the example in Figure 3-1 and 
shows Bob moving through two hotspots while receiving CNN TV. Bob’s 
mobile host receives CNN TV from stream-it.com in both hotspots and 
executes a handoff from hotspot2.nl to hotspot1.nl at point C. During the 
handoff, Bob’s mobile host will be temporarily disconnected from the 
802.11 infrastructure. It is not until after the handoff that it will be able to 
interact with stream-it.com, the local aggregator of hotspot1.nl. 
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We assume that mobile hosts always have IP connectivity on the UMTS 
overlay network (‘always-on’). This means that a switch to an aggregator 
that is available through that network can usually take place quickly (e.g., at 
point D in Figure 4-1 when Bob roams out of hotspot1.nl’s coverage area) 
and is typically not time-critical. A switch from an aggregator on the overlay 
network to an aggregator on the 802.11 network (e.g., at point B) is not 
time-critical either, in this case because the mobile host does not need to 
disconnect from the infrastructure. Switches between aggregators that 
belong to overlay networks of different access providers (e.g., between 
UMTS networks in bordering countries) are outside the scope of this thesis. 

4.2 Delay Components 

In this section, we provide an overview of the various delay components 
that play a role in the ALIVE system when a mobile host moves into the 
coverage area of another 802.11 access provider (see Section 4.1). The goal 
of this overview is to put the delay introduced by the ALIVE protocol into 
perspective, specifically to be able to contrast it with the other delay 
components in the system (e.g., the delay to execute an 802.11 handoff).  

For reasons outlined in Section 4.1, we concentrate on the operation of 
the ALIVE protocol on 802.11 links. We isolate the delays caused by 
802.11 links and use the data we found in the literature to provide best and 
worst-case estimates for the other delay components. We assume that 
backbone links are reliable (cf. the packet loss statistics on the Abilene 
network [Abilene04]) and ignore local processing delays. The only 

Figure 4-1. Roaming 
through two hotspots.  
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exception is the delay to authenticate a user, which may be substantial as 
observed in [Mishra04, Pack02]. 

We distinguish two overall delay components: the ALIVE protocol delay 
(for configuration discovery and switching) and the IP handoff delay. An IP 
handoff connects a mobile host to another 802.11 network and establishes 
IP connectivity on that network. An IP handoff includes the execution of 
the 802.11 handoff, the authentication of the user on the target network, 
and so on. 

In the host architecture of Section 3.4, the connectivity handler is 
responsible for running the protocols to execute an IP handoff (e.g., DHCP 
[Droms99] to get an IP address for an interface), whereas the ALIVE 
protocol entities are responsible for executing the ALIVE protocol.  

We first consider the IP handoff delay (Section 4.2.1) and then the 
ALIVE protocol delay (Section 4.2.2). We conclude this section with a 
discussion on the overhead of the ALIVE protocol (Section 4.2.3), which 
we express as the ratio of the ALIVE protocol delay and the IP handoff 
delay. 

4.2.1 IP Handoff Delay 

Figure 4-2 shows the message sequence diagram of an IP handoff. The IP 
handoff delay consists of five subdelays: a detection delay (not shown in 
Figure 4-2), an 802.11 handoff delay, a network-level authentication delay, 
and an interface configuration delay. 
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Figure 4-2. Delay 
components to execute 
an IP handoff to another 
802.11 network. 
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Detection Delay 
In general, the detection delay is the delay it takes the switching controller 
of a mobile host to detect that an event has occurred (e.g., on one of the 
host’s interfaces). The detection delay depends on the mechanism used to 
detect events (e.g., on RTCP Receiver Reports [Schulzrinne96a] that are 
generated every 5 seconds to report packet loss rates and other information 
pertaining to the quality of a stream). 

802.11 Handoff Delay 
The 802.11 handoff delay is the delay to connect a mobile host to another 
802.11 access point. Average values for 802.11b handoff delays that have 
been reported in the literature vary from around 40 to almost 600 
milliseconds [Mishra03, Vatn03, Shin04, Velayos03]. Actual 802.11 
handoff delays can vary considerably, for instance as a result of the 802.11 
hardware that the mobile host and the access points use [Mishra03, 
Vatn03], and the amount of competing traffic on the target network, either 
as a result of traffic generated or received by other hosts on the target access 
point’s frequency [Vatn03, Velayos03], or as a result of traffic from adjacent 
frequency channels [Shin04].  

The major delay component in an 802.11 handoff is the time that a 
mobile host spends scanning for a target access point. The scanning delay 
constitutes about 90% of the entire 802.11 handoff delay [Shin04, 
Velayos03] and must take place after the mobile host disconnected from its 
current access point. One solution to speed up the handoff process is to 
selectively scan the 802.11 channels (11 channels in the US, 13 in most of 
Europe) for available access points, which reduces the handoff delay to an 
average of around 150 milliseconds [Shin04]. 

In the rest of this chapter, we assume that average 802.11 handoff delay 
lies between 40 and 600 milliseconds: 

 
40 ≤ t802_ho ≤ 600 
 

where t802_ho is the 802.11 handoff delay. 

Network-level Authentication Delay 
The network-level authentication delay is the time it takes to authenticate a 
user on the target 802.11 network. The network-level authentication delay 
is highly deployment dependent. It for instance depends on the 
authentication mechanism (e.g., password or certificates) and on the 
protocol used in the target network to exchange authentication keys, 
encryption keys, and so on (e.g., 802.1x [Mishra04, Pack02]). In an inter-
access provider handoff, the target access provider will typically authenticate 
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a user with his home access provider, which requires a AAA interaction with 
that provider [Køien03, Kwon02]. 

In this chapter, we assume that the mobile host authenticates a user 
with an 802.11 network through a single request-response interaction with 
a AAA proxy of the target 802.11 provider (see Figure 4-2) [Kwon02]. We 
furthermore assume that the interaction between the AAA proxy and the 
user’s home access provider also consists of a single request-response pair, 
typically using a protocol like Diameter [Calhoun03]. 

As a result, the network-level authentication delay equals: 
 
d(host, accessPoint) + drtx(host, aaaProtocol) + 
2*d(aaaProxy, accessPoint) + 
2*d(aaaProxy, homeAggregator) + 
dauth(homeAggregator) + 
d(accessPoint, host) + drtx(aaaProxy, aaaProtocol) 

 
where d(src, dst) is the one-way delay to convey a message from source src 
to destination dst, dauth(e) the delay to authenticate a user at entity e, and 
drtx(src, protocol) the delay introduced by a source src to reliably deliver a 
message over a network path that involves a wireless link. 

drtx(src, protocol) depends on the specific higher-layer protocol that the 
source uses to deliver the message, typically by means of retransmissions (cf. 
SIP). The higher-layer protocol could for instance use an exponential back-
off retransmission scheme, in which case drtx(src, protocol) would equal b 
+ 2*b + 4*b + … n*b, with b being the back-off time and n a power of 
two. Notice that drtx(src, protocol), d(host, accessPoint), and d(accessPoint, 
host) depend on the charateristics of the wireless link at the moment the 
source (re)transmits a message (e.g., in terms of SNR, transmission rate, 
and so on). 

The delays on the up and down links between the host and the AAA 
proxy may be different as a result of the varying conditions of the 802.11 
radio link, which is why we have represented them as two separate delay 
components (i.e., d(host, acessPoint) and d(accessPoint, host)). We have 
assumed that the delays on the fixed network are symmetric (see the one-
way delay statistics of the Abilene network [Abilene04]), which is why the 
round-trip delay on the fixed network is twice the one-way delay (e.g., 
2*d(aaaProxy, accessPoint)). 

We will reuse the above notations and assumptions throughout this 
section. 

We estimate the authentication delay at a home access provider 
(dauth(homeAggregator)) to lie between 1.1 second and 50 milliseconds, 
which are values reported in [Mishra04] for intra-domain domain 
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authentication. The 50 milliseconds is the average of an optimized 802.1x 
authentication mechanism. 

For the delay between the AAA proxy and the home access provider 
(d(aaaProxy, homeAggregator)) we assume an average of at most 38 
milliseconds, which is the average one-way delay on the Abilene network 
from New York City to Los Angeles (measured from April 4 till May 4, 
2004) [Abilene04]. The minimum delay between the proxy and the home 
access provider is 0 milliseconds, which occurs when the proxy belongs to 
the home access provider (i.e., the target access point belongs to the user’s 
home access provider). 

The access point and the AAA proxy are part of the same access 
provider, so we assume an average one-way delay of 2 milliseconds between 
these two entities [Kwon02]. 

Based on our own measurements (see Section 4.5), we assume a best-
case one-way delay across the 802.11 link (i.e., for d(host, accessPoint) and 
d(accessPoint, host)) of 12 milliseconds. This is on an 802.11b network at 
a 1 Mbps transmission rate, which is the typical rate at the edge of an 
802.11 cell. The 12 milliseconds was measured at the socket-level and 
therefore also includes operating system delays. 

In the best case, the host and the AAA proxy also do not need to 
retransmit any messages, which means that drtx(host, aaaProtocol) and 
drtx(aaaProtocol, host) are zero. 

Summing up, the network-level authentication delay is bounded by: 
 
78 ≤ tnet-auth(aaaProtocol, homeAccessProvider) ≤ 

1180+ d(host, accessPoint) + drtx(host, aaaProtocol) + 
d(accessPoint, host) + drtx(aaaProxy, aaaProtocol) 

 
where tnet-auth(aaaProtocol, homeAccessProvider) is the total network-level 
authentication delay for a specific network access protocol and a specific 
home access provider. 

Observe that in our analysis authentication takes place before the mobile 
host receives an IP address (as is the case in 802.1x [Gast02, Mishra04, 
Pack02]). Alternatively, authentication can also take place afterwards 
[Kwon02]. 

Interface Configuration Delay 
The interface configuration delay is the time it takes to configure a mobile 
host’s 802.11 interface on the target network. At a minimum, this means 
that the interface needs to be configured with an IP address and that it 
needs the IP and MAC addresses of a default router on the 802.11 network. 
In this thesis, we assume that DHCP [Droms99] gets the interface’s IP 
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address and the IP address of the default router, while ARP is responsible 
for getting the MAC address of the default router [Kwon02]. 

On a fixed Ethernet, the average DHCP delay can vary from a few 
seconds to almost 15 seconds [Vatn98]. This is primarily the result of the 
way in which different DHCP stacks implement Duplicate Address 
Detection (DAD) [Vatn98], which is a procedure in which a host verifies 
that no other hosts on the network are using a particular IP address. For 
stateless autoconfiguration in IPv6 (i.e., without DHCP), the average DAD 
delay is 1.5 seconds [Nakajima03]. 

In this chapter, we assume that DHCP skips DAD (as suggested by 
[Vatn98] and [Nakajima03]), which reduces the DHCP delay to the link 
delay. Since a DHCP sequence consists of four messages (a Discover, an 
Offer, a Request, and an Acknowledge, see Figure 4-2), the DHCP delay is 

 
2*d(host, accessPoint) + 2*drtx(host, dhcp) + 
2*d(accessPoint, host) + 2*drtx(dhcpServer, dhcp) + 
4*d(accessPoint, dhcpServer) 
 

We also assume that the DHCP server is co-located with the default router 
of the 802.11 network. As a result, the mobile host can learn the router’s 
MAC address from the messages sent by the DHCP server, which avoids the 
extra ARP round-trip over the link [Vatn98]. In this case, we can 
furthermore assume that the average one-way delay between the access 
point and the DHCP server is 2 millisecond since both will be on the same 
network. Again assuming a best-case one-way over-the-air delay of 12 
milliseconds, the interface configuration delay is bounded by: 

 
56 ≤ tif-config(dhcp) ≤ 2*d(host, accessPoint) + 2*drtx(host, dhcp) + 

   2*d(accessPoint, host) + 2*drtx(dhcpServer, dhcp) + 8 
 

where tif-config(dhcp) is the interface configuration delay using DHCP. 
The configuration delay is usually followed by a location update delay (cf. 

Mobile IP [Solomon98], SIP [Wedlund99], and so on), which is the time it 
takes to inform correspondent hosts and ‘home agents’ of the mobile host’s 
new IP address. In the ALIVE system, these location updates are only 
necessary if the switching controller on the mobile host has used the 
configuration notification service to subscribe to the events of at least one 
aggregator (see sections 3.4.6 and 3.6.2). We assume that location updates 
in the ALIVE system take place after the completion of a switch, which 
means the associated delay is not part of our analysis. Observe that a 
location update might be more critical for other applications that run on 
the mobile host (e.g., a telephony application). 
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Aggregator Discovery Delay 
The aggregator discovery delay is the time it takes to discover one or more 
local aggregators on the target 802.11 network. We assume that the 
connectivity handler piggybacks the aggregator request and response 
messages onto DHCP messages. In particular, we assume that DHCP 
Acknowledge messages will contain the URIs that point a mobile host to 
the local aggregators on the network [Schulzrinne02]. As a result, the 
aggregator discovery delay does not any additional delay in our analysis. 

4.2.2 ALIVE Protocol Delay 

Figure 4-3 shows the message sequence diagram of the ALIVE protocol  in 
case it detects a new local aggregator on the target 802.11 network. To 
keep the figure readable, it does not show the SIP ACK messages. Figure 4-3 
also assumes that the mobile host’s current aggregator is no longer 
reachable on the target 802.11 network, which means that the switching 
controller on the mobile host cannot send a release message to the current 
media server to release the multimedia session (see Section 3.4). To 
simplify our analysis, we assume that the switching controller decides not to 
discover the capabilities of the local aggregators on the target 802.11 
network. As a result, we omit capability discovery from our analysis (Figure 
4-3 therefore shows the capability discovery interactions as dashed arrows). 
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Figure 4-3. Delay 
components of the 
ALIVE protocol on an 
802.11 network. 
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Configuration Query Delay 
The configuration query delay for a specific aggregator depends on whether 
the switching controller has already authenticated the user with the 
aggregator. If this is not the case, then the switching controller first sends 
an INVITE (a combined authentication-configuration request, see Section 
3.7) to the aggregator’s front-end (see Figure 4-3). The ALIVE protocol 
entity on the mobile host may need to resubmit the INVITE request at 
most twice before it will be able to receive a 200 OK. Specifically, it will 
need to resubmit the INVITE if the front-end does not accept the refresh 
interval in the INVITE, or when it did not include the user’s credentials in 
the INVITE. We will assume that the latter will not occur, which means 
that the maximum configuration discovery delay involves two round-trips 
with the front-end and one-round trip with the home aggregator: 
 

2*d(host, accessPoint) + 2*drtx(host, sip) + 
2*d(accessPoint, host) + 2*drtx(frontEnd, sip) + 
4*d(frontEnd, accessPoint) + 
2*d(frontEnd, homeAggregator) + 
dauth(homeAggregator) 
 

If a switching controller has already authenticated a user with an aggregator 
(not shown in Figure 4-3), the configuration query delay is the delay 
between the transmission of a re-INVITE (configuration request) and the 
arrival of the 200 OK (configuration response). This situation can for 
instance occur when the same local aggregator was also bound to the old 
802.11 network. In this case, the configuration query delay equals: 

 
d(host, accessPoint) + drtx(host, sip) + 
d(accessPoint, host) + drtx(frontEnd, sip) + 
2*d(frontEnd, accessPoint) 
 

We assume that the local aggregators on the target 802.11 networks are in 
the ‘network vicinity’ of the access provider (i.e., a limited hops a way from 
the access provider’s network). We therefore assume a maximum average 
delay between the access point and the front-end of the local aggregator of 
10 milliseconds, which is the average rounded-off one-way delay on the 
Abilene network from New York City to Chicago [Abilene04]. In the most 
extreme case, the aggregator and the access provider will be co-located in 
one domain (cf. the Supplementary Service Providers in [Trossen03]), in 
which case we assume that the average one-way delay between the access 
point and the aggregator’s front-end is 2 milliseconds. 

As before (see Section 4.2.1), we assume a best-case one-way delay 
across the wireless link of 12 milliseconds, a minimum for drtx of 0 seconds, 
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a maximum one-way delay to the user’s home aggregator of 38 
milliseconds, and a maximum authentication delay of 1.1 seconds. Using 
the authenticated case as the best case, the configuration query delay on an 
802.11 network is bounded by: 

 
28 ≤ tquery ≤ 2*d(host, accessPoint) + 2*drtx(host, sip) + 

  2*d(accessPoint, host) + 2*drtx(frontEnd, sip) + 1216 
 

where tquery is the configuration query delay. 
The ALIVE protocol entity on the mobile host typically transmits 

multiple INVITEs to multiple front-ends (see Section 3.6), in which case 
the total configuration query delay is determined by the highest query delay 
of the individual aggregators (e.g., as a result of varying conditions of the 
802.11 link when the 200 OKs arrive at the access point). The ALIVE 
protocol entity on the mobile host can however cap the discovery time at a 
certain threshold (see Section 3.4). 

Switching Delay 
In general, a switching controller can execute a switch in a number of ways, 
for instance in a break-before-make fashion (first release the multimedia 
session with the current server, then establish a new session with the target 
media server) or in a break-before-make fashion (the other way around). In 
our analysis, we assume that the switching controller can no longer reach 
the current media server via the target 802.11 network and therefore only 
transmits an establishment request to the target media server. As a result, 
the switching delay is the delay between the transmission of the 
establihsment request and the arrival of the response, which corresponds to 
twice the one-way delay from the host to the target media server. Also 
assuming that the target media server is a SIP server, the switching delay 
equals: 

 
d(host, accessPoint) + drtx(host, sip) + 
d(accessPoint, host) + drtx(targetMediaServer, sip) + 
2*d(targetMediaServer, accessPoint) 
 

We assume that the media servers of an aggregator are co-located with the 
aggregator’s front-end, which means that the maximum one-way delay 
between a media server and an access point is 10 milliseconds. The 
minimum one-way delay is 2 milliseconds (if the aggregator and the access 
provider are co-located in one domain). The switching delay is therefore 
bounded by 

 
28 ≤ tswitch ≤  d(host, accessPoint) + drtx(host, sip) + 
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d(accessPoint, host) + drtx(targetMediaServer, sip) + 20 
 

where tswitch is the switching delay. 

4.2.3 ALIVE Protocol Overhead 

One way to calculate the overhead of the ALIVE protocol is to determine 
the ratio of the ALIVE delay and the best-case IP handoff delay. That is: 

 
(tquery + tswitch)/174 
 

where 174 milliseconds in the sum of the lower bounds of t802_ho, tnet-

auth(aaaProtocol, homeAccessProvider), and tif-config(dhcp). 
If we use the minimum values for tquery and tswitch, then the ratio equals 

(28+28)/174, which is approximately 32%. That is, the best-case ALIVE 
delay is around 32% of the best-case IP handoff delay. 

In the rest of this chapter, we analyze the non-best-case values of 
2*d(host, accessPoint) (and vice versa) and drtx(host, sip), in particular 
under different 802.11 network conditions. 

4.3 Experiments 

As we have seen in Section 4.2.3, the configuration discovery delay of the 
ALIVE protocol depends on the delay on an 802.11 link and on the time it 
takes a SIP sender (a switching controller or a front-end) to deliver a 
message to a SIP receiver (i.e., drtx). Both of these factors in turn depend on 
the packet loss characteristics on the wireless link. 

In the ALIVE system, SIP runs on top of UDP (see Section 3.7), which 
means that the messages of a transaction may get lost. To reliably execute 
transactions over UDP, SIP uses an exponential back-off retransmission 
mechanism [Rosenberg02a]. The default back-off time of this mechanism is 
0.5 seconds, which means that the loss of a single SIP message results in a 
delay of 0.5 seconds, two consecutive losses in a delay of 0.5 + 2*0.5 
seconds, three consecutive losses in 0.5 + 2*0.5+ 4*0.5 seconds, and so 
on. Delays of this magnitude would dominate the configuration discovery 
delay, in particular when aggregators cache authentication state to reduce 
the authentication delay and when mechanisms like selective scanning, pre-
authentication, and selective DAD (see Section 4.2.1) are used at the 
network-level. 

In the rest of this chapter, we therefore experiment with the 
retransmission behavior of SIP transactions, specifically over 802.11b links. 
The goal of our experiments is to determine how different network-level 
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packet loss parameters (e.g., signal to noise ratio and transmission rate) 
influence the retransmission behavior of a SIP transaction. We concentrate 
on mobile hosts that are at the edges of 802.11 cells, which is where the 
ALIVE protocol typically comes into play (see Section 4.1). 

The results of our experiments enable mobile hosts to dimension their 
playout buffer such that switches can take place in a smooth manner, in 
particular during an 802.11 handoff. A spin-off is that our experiments 
might assist access providers in dimensioning their 802.11 infrastructure in 
such a way that it increases the probability that a mobile host can smoothly 
switch to another aggregator. 

In this section, we take a more detailed look at SIP’s retransmission 
scheme (Section 4.3.1) and discuss the 802.11 parameters that we vary in 
our experiments (Section 4.3.2). 

4.3.1 SIP Retransmissions 

SIP only retransmits messages when it runs on top of UDP. The 
retransmission scheme is exponential back-off with a default back-off timer 
of 0.5 seconds [Rosenberg02a]. A retransmitted SIP messages is a duplicate 
of the original message, which means that a retransmitted message carries 
the same dialog and transaction identifiers (see Section 3.7.2) as the 
original. Figure 4-4 shows an example of SIP’s retransmission behavior. 

SIP server

100 Trying 

INVITE 

SIP client 

200 OK

ACK 

INVITE 

200 OK

INVITE 
0.5 sec

1 sec

2 sec 0.5 sec

without an ACK, 
continue to 
retransmit the 200 
OK for at most 
64*T seconds 

1 sec

without a 200 OK,
continue to

retransmit  the
INVITE for at most

64*T seconds

after a 200 OK,
continue to react to

200 OK
retransmissions
with an ACK for

64*T seconds

 

After it sent the original INVITE, a SIP client retransmits an INVITE for at 
most 32 seconds or until it receives a response (100 Trying or 200 OK), 
whichever happens first. As a result, a SIP client can retransmit an INVITE 
at most 6 times (i.e., transmit it 7 times), specifically at 0.5, 1.5, 3.5, 7.5, 
15.5, and 31.5 seconds after the transmission of the original INVITE. 

A SIP server retransmits an 200 OK for at most 32 seconds or until it 
receives an ACK, whichever happens first. A SIP server follows the same 

Figure 4-4. Example of 
SIP’s retransmission 
behavior. 
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retransmission scheme as a SIP client, except that it caps the back-off time 
at 4 seconds. As a result, a SIP server can retransmit a 200 OK at most 10 
times (i.e., 11 transmissions) after the transmission of the original 200 OK 
(at 0.5, 1.5, 3.5, 7.5, 11.5, 15.5, 19.5, 23.5, 27.5, and 31.5 seconds after 
the transmission of the first 200 OK). 

We consider a SIP transaction failed if (1) the client did not receive a 
200 OK 32 seconds after it sent the original INVITE, or (2) when the 
server did not receive an ACK 32 seconds after it sent the original 200 OK. 
We note that the SIP RFC does not explicitly call the first case a transaction 
failure. In addition, if a 200 OK reaches the client but the ACK never gets 
back to the server, then the SIP RFC does not consider that a transaction 
failure either because an ACK is not part of an invite transaction that 
involves a 200 OK. 

A SIP server transmits a provisional response when it receives an 
INVITE, either the first one or a retransmission. It does however not 
actively retransmit the provisional responses. Similarly, SIP clients only 
transmit an ACK when they receive a 200 OK (original or retransmission) 
and do not actively retransmit ACKs either. 

4.3.2 802.11 Packet Loss 

In general, packet loss on an 802.11 network depends on a wide variety of 
parameters [Eckhardt96, Hoene03, Aguayo04]. In this thesis, we 
experiment with four them on 802.11b links: 

– Signal strength. The signal strength influences the probability that a 
message is lost or corrupted when it is in transit to its destination. 
The lower the signal strength, the higher the probability that a packet 
will get lost or corrupted [Hoene03, Punnoose01, Doufexi03, 
Aguayo04]; 

– Retry limit. 802.11 senders retransmit a frame until they get an 
acknowledgement from the receiver [Gast02]. The retry limit 
indicates how often a sender will retransmit unacknowledged frames 
before it considers them lost. The higher the retry limit, the lower 
the probability that the application will have to retransmit messages 
itself. However, higher values of the retry limit also increase the time 
it takes to get a message to the other end [Hoene03]. Higher retry 
limits might furthermore increase the medium access delay as 
802.11 senders do not accept a new frame from the application until 
the previous one was either acknowledged or lost [Punnoose01]. 

– Background traffic. Since 802.11 is a shared-medium network, traffic 
from other hosts on the network can increase the medium access 
delay as well as the number of collisions [Aguayo04]. Both factors 
can increase the packet loss rate on the network. 
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– Bit rate. 802.11b supports four bit rates: 1, 2, 5.5, and 11 Mbps. The 
network is more reliable at 1Mbps than at 11 Mbps [Hoene03] as a 
result of the different modulation schemes that an 802.11 radio uses 
at different rates. 

In our experiments, we use low signal strengths and usually set the 
transmission rate to 1 Mbps. This corresponds to the situation where a 
mobile host is at the edge of an 802.11b network. We use different retry 
limits and run experiments with and without background traffic. We refer 
to Section 4.5 for a discussion on the results. 

Other sources of packet loss in 802.11 networks include spatial 
distribution, interference from other sources (e.g., Bluetooth 
[Punnoose01]), effects of multi-path, and so on. We refer to [Eckhardt96,  
Hoene03, Aguayo04] for an elaborate overview. 

4.4 Measurement Set-up 

This section discusses the set-up that we used to conduct our experiments. 
We first provide an overview of the set-up (Section 4.4.1) and then 
consider its basic operation (Section 4.4.2) and its physical arrangement 
(Section 4.4.3). We conclude with an overview of the hard and software we 
used (Section 4.4.4). 

4.4.1 Overview 

Figure 4-5 shows the high-level organization of our measurement set-up. 
The main components of the set-up are a SIP client and a SIP server that 
execute a series of SIP transactions over an 802.11b link. We refer to such 
a series of transactions as a (transaction) run. The other components in the 
set-up are a network sniffer and a traffic generator. 

The whole set up is controlled by a script, which reconfigures the 
802.11 network, the traffic generator, and the sniffer after each transaction 
run, and then starts a new run. The control script transmits its instructions 
via a fixed network (Ethernet) and connects to the other components 
through telnet connections. 

The SIP client and SIP server are based on the Open SIP stack (version 
1) [OpenSIP], which we enhanced with our own software to make 
measurements. The SIP client is a laptop with a Prism2 802.11b card. The 
SIP server is a PC with the same card, but configured to acts as an access 
point. The sniffer and the traffic generator are separate laptops, both with 
an Orinoco gold 802.11b card. The sniffer uses tcpdump [tcpdump] to 
capture packets; the traffic generator uses the tool jtg [jtg] to generate 
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traffic. The PC and the laptops all run on Linux. We refer to Table 4-1 at 
the end of this section for more details. 

802.11b

commands

SIP server/
access point

traffic 
generator

sniffer

SIP client

control 
script

control 
script

com
m

ands

com
m

ands

commands

 

4.4.2 Basic Operation 

Figure 4-6 shows the basic operation of the control script, which runs on 
the SIP client. 

The control script is a nested for-loop that reconfigures the 802.11b 
network at each iteration and then starts a new transaction run. To 
reconfigure the network, the script changes the signal to noise ratio (SNR) 
at the SIP client, the retry limit and the transmission rate at the SIP client 
and the SIP server, and the amount of background traffic injected into the 
network by the traffic generator (see Section 4.4.1). 

To change the SNR at the client, the control script modifies the 
transmission power of the access point (the SIP server). Due to 
hardware/firmware limitations, we could not change the transmission 
power of the SIP client, which means that it is always transmitting at the 
default transmission power (-3 dBm). As a result, our set-up is asymmetric. 
This means that the INVITEs and ACKs of a transaction will generally arrive 
at the SIP server, but that the 200 OKs and 100 Tryings might be lost as a 
result of a low SNR value. 

After it has reconfigured the network, the control script starts a new 
transaction run by starting the SIP server and the SIP client. At that point, 
the script also restarts the sniffer and the traffic generator. Figure 4-6 shows 
that the control script transmits a start commands to the remote devices 
(SIP server, traffic generator, and sniffer) and that these commands also 
contain the new 802.11 network parameters. 

Figure 4-5. High-level 
organization of the 
measurement set-up. 
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for background_load in “64” “128” “384” “512” … do # kbps
for transmission_rate in “1” “2” “5.5” “11” do

for transmission_power in “-30” “-31” “-32” “-33” … do # dBm
for retry_limit in “0” “1” “2” … “8” do

# ---- Start new transaction run ----
# Set transmission rate and retry limit of card
set_wlan_local(retry_limit, transmission_rate)
# Start sniffer
send_command_to(sniffer, “start”, bytes_per_packet)
# Start SIP server stack
send_command_to(access_point, “start”, transmission_power, retry_limit, transmission_rate)
# Start traffic generator
send_command_to(traffic_generator, “start”, background_load)
# Start SIP client stack. Automatically exits when transaction run is done.
start_client()
# ---- Transaction run completed ----

done
done

done
done  

The SIP client initiates a series of transactions with the SIP server at 
random (but configurable) intervals. The SIP client and server log the 
(re)transmission properties of each transaction, for instance in terms of the 
local time at which a message arrived, how many 200 OKs were 
transmitted, and if the transaction succeeded or failed. Figure 4-7 shows 
where we made these measurements in the SIP stack. 
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INVITE

200

200
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 transaction layer (U
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Using the information provided by the 802.11 card, the SIP client also 
makes signal-to-noise ration (SNR) measurements and logs the average 
SNR during a transaction. The SIP client calculates the average SNR by 
measuring the instantaneous SNR when it (re)transmits/(re)receives certain 

Figure 4-6. Basic 
operation of the control 
script.  

Figure 4-7. 
Measurement points in a 
SIP transaction. 
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messages (e.g., INVITEs and 200 OKs). The SIP client and server store 
their transaction logs in memory in order not to affect the measurements 
through I/O operations. Multiple transactions may be in progress at the 
same time if the SIP client initiates a new transaction before the previous 
one has terminated, typically as a result of packet loss on the wireless link. 

While the SIP client and server are executing transactions, the sniffer 
makes a network-level log of the messages it captured on the wireless link. 
We set the sniffer is in monitor mode, which means that it captures all the 
packets that traverse the wireless link, including 802.11 retransmissions. 
The sniffer dumps the packets it captured to file on-the-fly. The maximum 
size of the SIP messages we used is around 900 bytes, which means that 
they fit in a single UDP packet (i.e., no IP or 802.11 fragmentation). 

When the SIP client has initiated the last transaction of a series, it waits 
2*32 seconds for any ongoing transactions to finish. The reason for this 
dampening period is that the worst-case transaction requires 6 INVITE 
retransmissions (31.5 seconds) and 10 200 OK retransmissions (another 
31.5 seconds). 

After the dampening period, the SIP client transmits a stop command to 
the SIP server. At that point, both of them dump their logs to file and exit. 
This terminates the current iteration of the control script. 

To avoid ARP delays, the control script inserts a manual entry for the 
access point in the SIP client’s ARP cache before it enters the nested for-
loop (not shown in Figure 4-6). 

Analysis 
Before analyzing the measurements, we first fed the logs of the SIP client, 
the SIP server, and the sniffer through an integration script. This script 
creates an integrated log by matching the client-side measurements of a 
specific transaction with the measurements of that transaction made at the 
server and at the sniffer. We then used Excel and various Visual Basic 
scripts to analyze the data. 

4.4.3 Physical Environment 

Figure 4-8 shows how we physically arranged the machines in the set-up. 
The distance between the SIP client (a laptop) and the SIP server (the 
access point/PC) is about 1.20 meters. The traffic generator is located 
about halfway between the SIP client and the SIP server. The sniffer is 
about 20 centimeters away from the SIP server, which enables it to capture 
packets sent by the SIP server (which may operate at a low transmission 
power) as well as packets sent by the SIP client (which operates at full 
power). 
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To create very low signal levels at the SIP client (i.e., ‘put’ it at the egde 
of the 802.11 cell), we had to wrap the access point’s network card in foil 
(see the enlargement in Figure 4-8). The reason is that the card’s firmware 
supports a lowest transmission power of -43 dBm, which still results in a 
good SNR at the SIP client. 
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SIP ser ver
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~1.20 m

ethernet

ethernet

ethernet

ethernet
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The whole set-up is located in a computer lab. The 802.11 sniffing tool 
Kismet [kismet] showed no other networks on the channel that the access 
point uses (11). We configured other 802.11b networks under our control 
to make use of channels 1 through 7 to minimize interference. Networks 
that were not under our control already used channels in the 1-7 range. To 
further ensure that there were no interfering 802.11 networks, we also 
checked some of the sniffer’s logs for foreign beacons. There turned out to 
be none, which indicates that the environment was indeed free from 
interference of other 802.11 networks. 

The laptops in the set-up run on AC power to exclude influences from 
battery drain (e.g., lower processor speeds). 

4.4.4 Hardware and Software Used 

Table 4-1 provides an overview of the hard and software that we used in our 
set-up. 

Figure 4-8. Physical 
arrangement of the 
measurement set-up. 
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 Device 802.11 Software 
SIP client  Toshiba Satellite Pro 

2400 laptop; 500 
MHz Intel Pentium III 
Celeron processor; 
192 MB RAM; Redhat 
Linux 2.4.20-8 

Lynksys WPC11 PCMCIA 
card, version 3; hostap 
driver, version 0.2.4 (see 
http://hostap.epitest.fi) 

Open SIP [OpenSIP], 
version 1, enhanced with 
measurement code 

SIP server PC, 2 GHz Intel 
Pentium IV; 1 GB 
RAM; Debian Linux 
2.6.8.1 

Lynksys WPC11 PCMCIA 
card, version 3; hostap 
driver, version 0.2.5 (see 
http://hostap.epitest.fi) 

Open SIP [OpenSIP], 
version 1, enhanced with 
measurement code 

Sniffer Sony Vaio laptop; 
Redhat Linux 2.6.8; 
1600 MHz Intel 
Pentium M processor; 
1GB RAM 

Orinoco Gold card, 
Lucent/Agere firmware 
version 6.06; driver patch 
0.13e for monitoring mode 
support (see 
http://airsnort.shmoo.com/
orinocoinfo.html) 

tcpdump [tcpdump]; libcap 
3.8.3, development version 
(October 7, 2004); 
tcdpump 3.8.3, 
development version 
(October 7, 2004) 
[tcpdump] 

Traffic generator Toshiba Tecra 8200 
laptop; 750 MHz Intel 
Pentium III processor; 
255 MB RAM; Redhat 
Linux 2.4.20-8 

Orinoco Gold card, 
Lucent/Agere firmware 
version 8.72 

jtg [jtg] 

Control script - - Bash/expect [expect] 
Integration script - - Bash; libcap 0.8.3; 

tcdpump 3.8.3, 
development version 
(September 12, 2004) 
[tcpdump] 

4.5 Results 

In this section, we consider the results of our experiments. The goal of 
these experiments is to determine how different 802.11 network 
parameters influence the retransmission behavior of a SIP transaction, 
specifically at the edges of an 802.11 cell (see Section 4.1). Since our 
measurement set-up is asymmetrical (see Section 4.4.2), we concentrate on 
the retransmission behavior of SIP transactions in terms of retransmitted 
200 OKs. 

Table 4-2 provides an overview of the 802.11 setting in the experiments 
we conducted. The 802.11 transmission rate is usually 1 Mbps, since this is 
typical rate for mobile hosts at the edge of an 802.11 cell. For the same 
reason, the SNR is usually at the ‘low’ end of the SNR spectrum, typically 
varying from around 0 to 17 dB. In all of these experiments, the SIP client 
randomly initiates a transaction either every second or every 2 seconds. 

 

Table 4-1. Hard and 
software used in the 
measurement set-up. 
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Experiment SNR Transmission rate Retry limit Background Sections 
1,2 Low, fixed 1 Mbps 0 0 Mbps 4.5.1, 4.5.2 
3 Low, variable 1 Mbps 0, 2, 4, 6, 8 0 Mbps 4.5.3 
4 Low, variable 1 Mbps 0, 2, 4, 6, 8 1 Mbps 4.5.4 
5 High, fixed 1 Mbps 0, 2, 4, 6, 8 variable 4.5.5 
6 Low, variable 2, 5.5, 11 Mbps 0, 2, 4, 6, 8 0 Mbps 4.5.6 

Note that the first two experiments merely serve to determine the length of 
a transaction run and to check that our measurement set-up is stable. 

In Section 4.5.7, we will use the results of the above experiments to 
calculate the worst-case delays of the ALIVE protocol based on the formulas 
of Section 4.2.3. 

4.5.1 Experiment 1: Length of a Transaction Run 

The goal of our first experiment was to find an appropriate value for the 
length of the transaction runs executed by the SIP client and the SIP server 
(see Section 4.4.1). To accomplish this, we had to find the number of 
transactions in a run such that that the outcome of our measurements (e.g., 
in terms of the average number of transmitted 200 OKs per transaction) 
would not significantly change if we were to increase the number of 
transactions in the run. 

To find this value, we executed a two test runs, A and B. Each run 
consisted of 5000 transactions, so that we could average our results over a 
run of m transactions (1 ≤ m ≤ 5000). We set the 802.11 network 
parameters to their worst case values (low transmission powers, no 802.11-
level retries, and a 1 Mbps transmission rate) so that the outcome would 
also be applicable to experiments executed under better network 
conditions. The transmission power of the access point was –36 dBm 
during run A and –35 dBm during run B, which ‘put’ the SIP client at the 
edge of an 802.11 cell. As a result of this setting, the average SNR at the SIP 
client is lower during run A than during run B. We executed both runs 
without any background traffic. 

Figure 4-9 shows the average number of transmitted 200 OKs per 
transaction for experiment A. The x-axis shows the number of transactions 
in a run (m) as multiples of 5 (5 ≤ m ≤ 1500). The line continues in the 
same manner for 1500 < m ≤ 5000 (not shown). The error bars indicate 
the standard deviation. 

The curve in Figure 4-9 shows that the average number of transmitted 
200 OKs fluctuates until around m = 500. This suggests that runs of 500 
transactions are appropriate. Figure 4-9 also shows that the standard 
deviation stabilizes at around m = 200. The outcome of run B (not shown) 
is similar. In that case, the fluctuations in the average transmitted 200 OKs 
disappear at around m = 300. 

Table 4-2. Experiments 
overview. 
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Figure 4-10 shows the average SNR per transaction for the first 1500 
transactions of run A. The curve in Figure 4-10 averages around 2.8 dB, 
which indicates that the run was executed under stable radio conditions. 
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4.5.2 Experiment 2: Stability of Set-up 

The goal of our second experiment was to determine if our measurement 
set up is stable. We consider the set-up stable if the average delay between 
the transmission of the first INVITE and the reception of the corresponding 
200 OK stabilizes. The idea is that the delay between an INVITE and a 200 
OK includes the processing delay of the SIP server’s stack, but not that of 
the SIP stack on the client. If the average delay does not stabilize (e.g., it 
continues to increase), then this is an indication that the server stack is 
behaving abnormally (e.g., it continues to build up transaction state). 

Figure 4-9. Average 
number of transmitted 
200 OKs plus standard 
deviation during stability 
experiment A. 

Figure 4-10. Average 
SNR per transaction for 
test run A. 
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Similarly, if the average delay between a 200 OK and an ACK on the server 
does not stabilize, then this is an indication that the client SIP stack is 
behaving abnormally. Observe that we configured both stacks such that they 
removed all of a transaction’s state at the end of the transaction’s maximum 
life-time (32 seconds after the reception of the first 200 OK for the client 
part of transaction, and 32 seconds after the transmission of the first 200 
OK for server side transactions). 

To check the stability of our set-up, we reused the data we gathered 
during runs A and B of Section 4.5.1. Figure 4-11a shows the average 
INVITE-200 OK delay and the average 200 OK-ACK delay per transaction 
for run A. The x-axis represents the number of transactions m in the run, 
again in multiples of 5 (5 ≤ m ≤ 5000). The average INVITE-200 OK 
delay stabilizes at around 6 seconds, whereas the average 200 OK-ACK 
delay stabilizes at around 5.8 seconds. The average 200 OK-ACK delay is 
probably somewhat higher because it includes the processing delay of the 
SIP client, which is a laptop that is less powerful than the SIP server (a PC). 
The results of experiment B (not shown) are similar, except that the average 
INVITE-200 OK delay stabilizes at around 1.7 seconds and the average 200 
OK-ACK delay at around 1.9 seconds. Figure 4-11b shows that the standard 
deviation of run A stabilizes at around 7 seconds for the INVITE-200 OK 
delay, and at around 7.2 seconds for the 200 OK-ACK delay. 
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For completeness, we also measured the processing delay of the SIP stack 
on the SIP client and on the SIP server. Figure 4-12a shows the average 
delay per client transaction to transmit an INVITE and handle an incoming 
200 OK; Figure 4-12b shows the average time for a server transaction to 
handle an incoming INVITE and to transmit a 200 OK. The x-axis 
represents the number of transactions in a run in multiples of five. 

All four curves in Figure 4-12 stabilize quickly, which further suggests 
that the entire set-up is stable. Figure 4-12b also shows that the processing 
delays of the SIP stack on the server is neglectable. Figure 4-12a shows that 
the average processing delay on the client (around 4.5 milliseconds) is non-
neglectable, but that it is stable.  

Figure 4-11. Average 
delays between an 
INVITE and a 200 OK 
and between a 200 OK 
and an ACK for 
transaction run A (a) and 
the associated standard 
deviation. /* Dec-1-
2004-stability, 
experiment 3 */ /* doe 
in normale omgeving; in 
worst case krijg je grote 
sprijding; anders ziet 
figuur met grote stdev er 
raar uit */ 
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4.5.3 Experiment 3: At the Edge of an Unloaded 802.11 Network 

The goal of experiment 3 is to analyze the retransmission behavior of SIP 
transactions at the edge of an 802.11 cell. We measure the percentage of 
transactions that require retransmissions for various SNRs and 802.11 retry 
limits as well as the associated SIP back-off delay. The 802.11 transmission 
rate in this experiment is 1 Mbps and the network does not carry any 
competing traffic. 

Experiment 3 is based on 145 transaction runs, each consisting of 500 
transactions. The transaction runs took place at 29 different SNR levels 
between 0 and approximately 17 dB and using five different 802.11 retry 
limits (0, 2, 4, 6, and 8). 

Figure 4-12. Client-side 
SIP processing delays 
(a) and server-side 
processing delays (b) 
for run A. /* Dec-1-
2004-stability, 
experimenten 3 */ /* 
client: verwaarloosbaar 
want constant + 
gebruiken we niet in 
verder metingen want we 
meten onder de client 
SIP stack */ 
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Transmitted 200 OKs 
Figure 4-13 shows the relative number of 200 OK transmissions for the 145 
transaction runs of experiment 3. We plot this as a function F(t, r, s), which 
represents the percentage of successful transactions that required t 200 OK 
transmissions in the transaction run at SNR level s (in dB) and at retry limit 
r. Figure 4-13a through Figure 4-13e shows F(t, r, s) for the five retry limits 
we consider in this experiment (0, 2, 4, 6, and 8). 

While the number of 200 OK transmissions in a transaction lies in the 
range 1-11 (see Section 4.3.1), we only plot F(t, r, s) for the range 1 
through 5 to increase the readability of Figure 4-13. The graphs in Figure 4-
13 also show E(r, s), which is the number of transactions that failed at a 
particular retry limit r and SNR s. 
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As expected, Figure 4-13 shows that an increased 802.11 retry limit 
increases the percentage of SIP transactions that only need to transmit one 
200 OK. For example, without any retries, 65% of the transactions requires 
only one 200 OK transmission at 5 dB (i.e., F(1, 0, 5) = 65%). With 2 or 
more retries, almost 100% of the transactions requires only one 200 OK 
transmission at 5 dB (e.g., F(1, 2, 5) equals around 95%). Figure 4-13 also 
shows that an increase in the retry limit enables SIP transactions to deliver 
200 OKs in one transmission at lower SNRs. For example, without retries, 
the SNR must be around 7.4 dB for 90% of the SIP transactions to deliver a 
200 OK in one shot (i.e., F(1, 0, 7.4) = 90%). For 2 retries this is at 
approximately 4.4 dB and for 4, 6, and 8 retries it is around 3.5 dB. 

Figure 4-13. 
Transmission behavior 
of SIP transactions. The 
curves indicate the 
percentage of SIP 
transactions that 
required t 200 OK 
transmissions (1 ≤ t ≤ 
5). The variables are the 
SNR and the retry limit 
(0, 2, 4, 6, and 8 in 
graphs a, b, c, d, and e, 
respectively). The 
constants are the 
transmission rate is (1 
Mbps) and the 
background load (0 
Mbps). 
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Fall-off Regions 
The dotted rectangles in Figure 4-13 represent what we call fall-off regions, 
which are the dB ranges in which F(1, r, s) falls from 90% to 10% (cf. 
[Aguayo04]). Within a fall-off region, the sum of the other F(t, r, s)’s (2 ≤ t 
≤ 11) plus E(r, s) increases from 10% to 90%.  

Figure 4-13 shows that 802.11 retransmissions decrease the width of the 
fall-off region. For example, the fall-off region is 4.6 dB wide without any 
802.11 retries (Figure 4-13a) and around 1.7 to 2.5 dB wide with retries 
(Figure 4-13b-e). The advantage of a small fall-off region is that the number 
of SIP retransmissions will remain relatively constant when the SNR 
decreases. Only in the fall-off region (i.e., at the edge of the network) will 
the number of retransmissions increase sharply. 

Although we only used five retry limits, Figure 4-13 suggests that the 
width of the fall-off region does not significantly decrease beyond a retry 
limit of 2. For 2, 4, 6, and 8 retries, the width of the fall-off regions is 
around 2.2 dB, 1.7 dB, 2.1 dB, and 2.5 dB, respectively.  

To see if a retry limit higher than 2 would be beneficial inside the fall-
off region, we calculated the average percentage of 200 OK transmissions 
(i.e., the average of the values of F(t, r, s)) inside the fall-off regions for the 
retry limits of 2, 4, 6, and 8. Figure 4-14 shows the result. The y-axis of 
Figure 4-14 indicates the average of F(t, r, s) in the fall-off region, while the 
x-axis specifies the number of 200 OK transmissions, t. 

Figure 4-14 suggests that an increase in the retry limit to 4, 6, or 8 only 
marginally improves the average percentage of transactions in the fall-off 
region that manage to deliver their 200 OK in one shot (i.e., the average of 
F(t, r, s) at t=1 does not significantly increase). Equivalently, increasing the 
retry limit to 4, 6, or 8 does not significantly reduce the percentage of 
transactions that requires one or more retransmissions to deliver a 200 OK 
(i.e., the average of F(t, r, s) at a particular t ≥ 2 does not significantly 
decrease). The reason is probably that the quality of the connection in the 
fall-off region is so bad that the additional 802.11 retries are lost as well.  

Based on this information, we draw the preliminary conclusion that a 
retry limit of 2 suffices for SIP-based applications like the ALIVE protocol, 
at least in an environment without interference and background traffic. This 
may be advantageous for packets carrying the actual multimedia data 
because a smaller retry limit can reduce the time these packets spend in the 
MAC queue waiting for the (re)transmission of packets at the head of the 
queue [Punnoose01].  
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Notice that the transaction run at 3.03 dB with a retry limit of 6 (Figure 4-
13d) experienced an unusual amount of packet loss, perhaps because of 
interference of some sort. 

As of around 3 dB, the percentage of failed transactions (i.e., E(r, s)) 
dramatically for all five retry limits. 90% of the transactions fail at around 2 
dB (retry limits zero and two) or at around 1 dB (the other three retry 
limits). 

Back-off Delays 
In experiment 3, the delay between the transmission of a transaction’s first 
INVITE and the arrival of the first 200 OK is mainly determined by the 
number of 200 OKs transmitted during the transaction. As a result, the 
INVITE-200 OK delay should follow the delays of the back-off sequence 
for retransmitting 200 OKs (i.e., 0.5 seconds for one retransmission, 1.5 
seconds for two retransmissions, 3.5 seconds for three retransmissions, and 
so on). 

To check this, we plotted D(d, r, s), which is the percentage of 
transactions with an INVITE-200 OK delay in the interval [d, d+0.25) 
seconds in a transaction run with retry limit r and SNR s. D(d, r, s) should 
be about the same as F(t, r, s) if d is the back-off delay for t transmissions. 
For example, D(0.5, r, s) should be about the same as F(2, r, s) since the 
second transmission (the first retransmission) of a 200 OK occurs 0.5 
seconds after the transmission of the original 200 OK. Similarly, D(1.5, r, 
s) should be about the same as F(3, r, s), D(3.5, r, s) about the same as F(4, 
r, s), and so on. 

Figure 4-15 plots D(d, r, s) for the retry limits 0 (Figure 4-15a) and 8 
(Figure 4-15b), and shows that D(d, r, s) indeed largely follows the same 

Figure 4-14. Average 
number of 200 OK 
transmissions in the fall-
off region for different 
retry limits. 
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curve as F(t, r, s) for the corresponding retry limits (see Figure 4-13a and 
Figure 4-13e). 

(a) (b) 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

D(0,0,s) D(0.5,0,s) D(1.5,0,s) D(3.5,0,s) D(7.5,0,s)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

average SNR [dB]

fre
qu

en
cy

 [%
]

D(0,8,s) D(0.5,8,s) D(1.5,8,s) D(3.5,8,s) D(7.5,8,s)  

4.5.4 Experiment 4: At the Edge of a Saturated 802.11 Network 

The goal of experiment 4 is to analyze the retransmission behavior of SIP 
transactions at the edge of an 802.11 cell that is fully loaded with 
competing traffic. As in experiment 3, we measure the percentage of 
retransmissions for various SNRs and retry limits as well as the associated 
back-off delay. The 802.11 transmission rate in this experiment is 1 Mbps 
and the network carries 1 Mbps of UDP Constant Bit Rate (CBR) 
background traffic. The packet size of the background traffic is 1000 bytes. 

Stability 
Since the background traffic might increase packet loss on the network, we 
first checked if 500 transactions per run still yielded stable results (cf. test 
runs A and B of Section 4.5.1). 

Figure 4-16 shows the results of the test run. Figure 4-16a shows the 
average number of transmitted 200 OKs over m transactions, where m is a 
multiple of 5 and 5 ≤ m ≤ 500. The average number of transmitted 200 
OKs stabilizes at around 3.8, which is at approximately 300 transactions. 
The error bars in Figure 4-16a indicate the standard deviation of the average 
transmitted 200 OKs. The bars show that the standard deviation of the 
transmitted 200 OKs ends up at around 2.7. 

The average delay between an INVITE and a 200 OK and the average 
delay between a 200 OK and an ACK (Figure 4-16b) also stabilize near 300 
transactions. The same holds for their standard deviations (Figure 4-16c). 
We therefore conclude that 500 SIP transactions is still a good value for the 
length of a transaction run if the network is saturated. 

Figure 4-15. Percentage 
of SIP transactions that 
incurs d seconds of 
delay between an INVITE 
and a 200 OK using 
different SNR levels and 
retry limits of 0 (a), and 
8 (b).The transmission 
rate is 1 Mbps and the 
network is unloaded. 
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Fall-off Regions 
Experiment 4 is based on 140 transaction runs, each consisting of 500 
transactions. The transaction runs took place at 28 different SNR levels 
between 0 and approximately 14 dB and using five different 802.11 retry 
limits (0, 2, 4, 6, and 8). Figure 4-17 shows the relative number of 200 OK 
transmissions of the transactions in the runs, again organized according to 
retry limit (0 retry limit in Figure 4-17a, a retry limit of 8 in Figure 4-17e). 

Figure 4-17 shows the same pattern as Figure 4-13, specifically that the 
width of the fall-off region decreases as the 802.11 retry limit increases. In 
addition, the width of the fall-off regions seem to be similar to those in the 
unloaded network. The width of the fall-off region is about 3 dB for a retry 
limit of 2 (Figure 4-17b, 2.2 dB in Figure 4-13b), 2 dB with a retry limit of 4 
(Figure 4-17c, 1.7 dB in Figure 4-13c), 2.3 dB for a retry limit of 6 (Figure 4-
17d, 2.1 dB in Figure 4-13d), and 1.8 dB for a retry limit of 8 (Figure 4-17e, 
2.5 dB in Figure 4-13e). This suggests that 802.11 MACs divide the link 
bandwidth fairly amongst the mobile hosts in a cell. The only exception 
seems to be the case where the 802.11 network does not retransmit frames, 
in which case the width of the fall-off region is around 11 dB (Figure 4-17a, 
4.6 dB in Figure 4-13a). 

Notice that the width of the fall-off region in Figure 4-17a is an estimate 
because F(1, 0, s) did reach 90% in experiment 4. Similarly, the width of 

Figure 4-16. Stability 
run for a saturated 
network. Average and 
standard deviation of the 
number of transmitted 
200 OKs (a), average 
delay between an INVITE 
and a 200 OK and 
between a 200 OK and 
an ACK (b) and the 
associated standard 
deviations (c). 



134 CHAPTER 4 ANALYSIS                                                

 

the fall-off region in Figure 4-17b is also an estimation because F(1, 2, s) did 
not cross the 10% threshold. 
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Figure 4-18 plots the average of F(t, r, s) inside the fall-off regions of Figure 
4-17. It shows that the average percentage of transactions that require one 
200 OK increases as the retry limit increases and that the difference 
between a retry limit of 2 and a retry limit of 8 is around 22%. The 
difference between the average percentage of transactions that transmit two 
or more 200 OKs gets smaller when the retry limit increases. The 
difference is at most 10% (at t = 2).  

Figure 4-17. 
Transmission behavior 
of SIP transactions. The 
curves indicate the 
percentage of SIP 
transactions that 
required t 200 OK 
transmissions (1 ≤ t ≤ 
5). The variables are the 
SNR and the retry limit 
(0, 2, 4, 6, and 8 in 
graphs a, b, c, d, and e, 
respectively). The 
constants are the 
transmission rate is (1 
Mbps) and the 
background load (1 
Mbps CBR traffic). 
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From Figure 4-18 we observe that a retry limit higher than 2 slightly 
improves the percentage of transactions that deliver their 200 OK in one 
shot, but that it does not significantly reduce the percentage of transactions 
that require two or more 200 OK transmissions. A retry limit of 4 or 
perhaps 6 therefore seems appropriate compared to the case where the 
network is unloaded (see Section 4.5.3). 

We note that the number of transaction runs executed inside the fall-off 
region decreases as the retry limit increases. As a result, the average in Figure 
4-18 are based on only a few transaction runs, in one case even on only one 
(retry limit of 8). 
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Figure 4-19 shows D(d, r, s) (see Section 4.5.3) using the retry limits 0 and 
8. Figure 4-19 shows that D(d, 0, s) and D(d, 8, s) largely follow the delays 
associated with a 200 OK’s back-off sequence (Figure 4-19a and Figure 4-
19b).  
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Figure 4-18. Average 
percentage of 
transactions with t 200 
OK transmissions inside 
the fall-off region. 

Figure 4-19. Relative 
frequency of INVITE-200 
OK delays in a fully 
loaded network. 
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4.5.5 Experiment 5: Variably Loaded Network 

The goal of experiment 5 is to determine the effects of background traffic 
on the behavior of SIP transactions. We therefore configured the SNR to a 
‘good’ value (around 32 dB on average) and ran 45 transaction runs using 9 
different CBR background loads and 5 different retry limits. 

Transmitted 200 OKs 
For experiment 5, function F (see Section 4.5.3) has the form F(t, r, b), 
where t is a number of 200 OK transmissions, r is a retry limit, and b is a 
background load (kbps). The SNR does not appear in F because it is a 
constant in experiment 5. 

Figure 4-20 plots the retransmission behavior of the SIP transactions at 9 
bandwidth levels (0…1024 kbps, multiples of 128 kbps) without any 
802.11 retries. Figure 4-20 indicates that the percentage of transactions that 
requires one or more retransmissions only increases at high background 
loads (as of 640 kbps) and that the maximum is 12.4% (see F(2, 0, 896)). 
This suggests that under ‘good’ radio conditions a CBR background load 
has little effect on the number of 200 OK retransmissions, even if the retry 
limit is 0. The number of transactions that retransmit a 200 OK is virtually 
0 for a retry limit of 2, 4, 6, or 8 (not shown). 

From Figure 4-20 we can conclude that CBR background traffic requires 
few SIP transactions to retransmit a 200 OK if the SNR is ‘good’. A retry 
limit of 2 suffices to reduce the number of 200 OK retransmissions to 
virtually zero. 
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Figure 4-20. 
Transmission behavior 
of SIP transactions. The 
curves indicate the 
percentage of SIP 
transactions that 
required t 200 OK 
transmissions (1 ≤ t ≤ 
5). The variables are the 
amount of background 
traffic. The constants are 
the retry limit (0), the 
transmission rate (1 
Mbps) and the SNR 
(around 32 dB on 
average).  



 RESULTS 137 

 

4.5.6 Experiment 6: Unloaded Network, Different Rates 

In experiment 6, we experimented with SIP transactions using the three 
other 802.11 transmission rates (2, 5.5, and 11 Mbps). For each of these 
transmission rates, we executed 120 transaction runs (500 transactions 
each), divided over 24 SNR levels and 5 retry limits. In this experiment, the 
network was unloaded. 

Fall-off Regions 
Figure 4-21 shows the fall-off regions at the three different transmission 
rates (columns) and five retry limits (rows). We denote the percentage of 
SIP transactions that transmitted a 200 OK t times as F(t, r, s, tx), where r 
is a retry limit, s an SNR value, and tx a transmission rate. From left to 
right, Figure 4-21 plots F(t, r, s, 2), F(t, r, s, 5.5), and F(t, r, s, 11). From 
top to bottom, it plots F(t, 0, s, tx), F(t, 2, s, tx), F(t, 4, s, tx), F(t, 6, s, tx), 
and F(t, 8, s, tx). 

Figure 4-21 shows that the fall-off regions shift to the right as the 
transmission rate increases (i.e., left to right). For example, with a retry 
limit of 2 and a transmission rate of 2 Mbps, the fall-off region begins at 
approximately 3.8 dB (Figure 4-21d). With the same retry limit and a 
transmission rate of 5.5 dB (Figure 4-21e), the fall-off region begins at 5.6 
dB, while at 11 Mbps it begins at around 9.8 dB (Figure 4-21f). These 
measurements confirm that higher bitrate modulation schemes are more 
sensitive to packet loss than lower rate ones [Hoene03, Agulayo04]. 

Figure 4-21 also shows that the width of the fall-off region decreases as 
the retry limit increases (cf. Section 4.5.3 for a 1 Mbps transmission rate). 
For example, at 11 Mbps (third column in Figure 4-21) the width of the 
fall-off region is approximately 3.5 dB, 2.2 dB, 1.5 dB, 1.5 dB, and 1.4 dB 
with a retry limit of 0, 2, 4, 6, and 8, respectively. 
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Rate Adaptation 
When a mobile hosts leaves a hotspot, it typically shifts down from 11 
Mbps, to 5.5, to 2, and eventually to 1 Mbps. Conversely, the host will shift 
back up to 11 Mbps when it enters a hotspot. This behavior is called rate 
adaptation and should take place automatically [Haratcherev04]. Rate 

Figure 4-21. F(t, r, s, tx) 
at 2 Mbps (left column), 
at 5.5 Mbps (middle 
column), and at 11mbps 
(right column). Each row 
represents one retry 
limit (0, 2, 4, 6, and 8).  
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adaptation is not part of the 802.11b standard, which means that it can also 
be controlled by applications, in this case the ALIVE system. 

To avoid high delays, the mobile hosts in the ALIVE system should move 
to a lower rate before they end up in the fall-off region of their current 
transmission rate. For example, when a mobile host is using a retry limit of 
two and its current transmission rate is 11 Mbps, then it should shift to 5.5 
Mbps before the SNR drops below 12 dB (see Figure 4-21f). 

To identify at which moments a SIP-based application should shift to 
another rate, we plotted the fall-off regions of the four 802.11b rates in 
Figure 4-22. Each of the five graphs in Figure 4-22 represent one specific 
retry limit (0, 2, 4, 6, or 8). Observe that Figure 4-22 only plots F(1, r, s, 
tx) to keep it readable. 

From Figure 4-22, we observe that the fall of regions of different 
transmission rates begin to overlap when the retry limit decreases. For 
example, at a retry limit of 8, the four fall-off regions are almost non-
overlapping (Figure 4-22e), while there is a considerable overlap if the retry 
limit is 0 (Figure 4-22a). To avoid ending up in a fall-off region, this means 
that a mobile host will need to change its rate more often across the same 
dB range at lower retry limits than at higher ones. 

Figure 4-22 thus provides a metric for the edge of an 802.11 cell, which 
depends on the SNR, the retry limit, and the transmission rate. This 
information can be used by switching controllers on mobile hosts to initiate 
configuration discovery. 
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Fall-off Regions 
Figure 4-23 shows the average value of F in the fall-off region for 2 Mbps 
(Figure 4-23a), 5.5 Mbps (Figure 4-23b), and 11 Mbps (Figure 4-23c). 
Similar to the 1 Mbps case (Figure 4-14), Figure 4-23 suggests that a retry 
limit of more than 2 does not significantly reduce the percentage of 
transactions that requires one or more retransmissions to deliver a 200 OK 
in the fall-off region. Note however that the number of transaction runs 
that take place in the fall-off region decreases as the width of the fall-off 
region decreases. As a result, some of the averages in Figure 4-23 are based 
on two or sometimes even one transaction run. 

Figure 4-22. Fall-off 
regions at different 
transmission rates (1, 2, 
5.5, and 11 Mbps) with 
retry limits of 0 (a), 2 
(b), 4 (c), 6 (d), and 8 
(e). 
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4.5.7 ALIVE Protocol Overhead Revisited 

Using the data of experiment 3 (unloaded network, Section 4.5.3) and 
experiment 4 (saturated network, Section 4.5.4), we can now also provide 
worst-case values for the delay formulas of Section 4.2.3 (ALIVE protocol 
overhead). In this chapter, we use the average delay between an INVITE 
and a 200 OK for this purpose. We consider the average value in the middle 
of the fall-off region to be the worst one. 

Unloaded Network (Experiment 3) 
Figure 4-24 shows the average delays between an INVITE and a 200 OK in 
experiment 3 using a retry limit of 2. Figure 4-24a shows the average delay 
over all SIP transactions in a run whereas Figure 4-24b shows the average 
delay for the transactions in a run that do not involve any SIP 
retransmissions (i.e., their delays are close to the round-trip delay to 
traverse the wireless link). The dashed rectangles in Figure 4-24 represent 
the fall-off region of Figure 4-13b. The vertical dashed line indicates the 
middle of the fall-off region. 

The worst-case average delay over all SIP transactions (Figure 4-24a) is 
approximately 324 milliseconds (at around 3.3 dB). Since we used an 
asymmetrical measurement set-up in which the client always transmits at 

Figure 4-23. Average of 
F(t, r, s, tx) in the fall-off 
region for 2 Mbps (a), 
5.5 Mbps (b), and 11 
Mbps (c). 
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full power (see Section 4.4), it is typically the path from the SIP server to 
the SIP client that is subject to SIP retransmissions. The one-way delay on 
this path is 324 milliseconds minus the one-way delay from the SIP client 
to the SIP server. The latter is equal to half the INVITE-200 OK delay of a 
SIP transaction that does not involve any SIP retransmissions (assuming 
symmetrical up and downlinks). Figure 4-24b shows that the worst-case 
average delay for such transactions is around 50 milliseconds (at around 3.3 
dB), which means that the worst-case one-way delay from the SIP server to 
the SIP client is 324 – (50/2) = 299 milliseconds. In the formulas of 
Section 4.2.2, the one-way delay from a front-end and a mobile host (i.e., 
d(accessPoint, host) + drtx(frontEnd, sip)) and the one-way delay from the 
target media server to the mobile host (i.e., d(accessPoint, host) + 
drtx(targetMediaServer, sip)) therefore both equal 299 milliseconds when 
the 802.11 network is unloaded. For simplicity, we assume that the one-
way delays in the other direction (host to front-end and host to target 
media server) are the same. 

Substituting the 299 milliseconds in the formulas of Section 4.2.2, we 
get a worst-case value for the configuration query delay (tquery) of: 

 
tquery = 4*299 + 1216 = 2412 milliseconds 

 
The worst-case switching delay (tswitch) in this case equals 

 
2*299 + 20 = 618 milliseconds 
 

The resulting total delay of the ALIVE protocol then equals 
 

tquery + tswitch = 3030 milliseconds 
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Loaded Network (Experiment 4) 
Figure 4-25 shows the average delays between an INVITE and a 200 OK in 
experiment 4 (network saturated with 1 Mbps of CBR background traffic) 

Figure 4-24. Average 
INVITE-200 OK delay in 
an unloaded network 
using a retry limit of 2. 
Graph (a) shows the 
average delays for all 
SIP transactions, 
whereas (b) shows the 
average delays for 
transactions without any 
SIP retransmissions. 
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using a retry limit of 4. Again, Figure 4-25a shows the average over all SIP 
transactions in a run whereas Figure 4-25b shows the average delay for the 
transactions without SIP retransmissions. The dashed rectangles represent 
the fall-off region of Figure 4-17c and the vertical dashed line the middle of 
the fall-off region. 

The worst-case average delay over all SIP transactions (Figure 4-25a) is 
approximately 2500 milliseconds (at around 2.4 dB). Using the same 
rationale as for the unloaded network (asymmetrical set-up), the one-way 
delay from the SIP server to the SIP client equals 2500 milliseconds minus 
the one-way delay from the SIP client to the SIP server. Since 1 Mbps of 
CBR background traffic does not cause any SIP retransmissions using a 
802.11 retry limit of 4 and a ‘good’ SNR value (see experiment 5, Section 
4.5.5), there will be no SIP retransmissions as a result of packet loss on the 
path from the SIP client to the SIP server. The one-way delay from the SIP 
client to the SIP server is therefore half the INVITE-200 OK delay of a SIP 
transaction that does not involve any SIP retransmissions (assuming 
symmetrical up and downlinks). Figure 4-25b shows that the worst-case 
average delay for such transactions is around 240 milliseconds (at around 
2.4 dB), which means that the one-way delay from the SIP server to the SIP 
client is 2500 – (240/2) = 2380 milliseconds. In the formulas of Section 
4.2.2, d(accessPoint, host) + drtx(frontEnd, sip) and d(accessPoint, host) 
+ drtx(targetMediaServer, sip) therefore both equal 2380 milliseconds. For 
simplicity, we again assume that the one-way delays in the other direction  
are the same. 

Substituting the 2380 milliseconds in the formulas of Section 4.2.2, we 
get a worst-case value for the configuration query delay (tquery) of: 

 
tquery = 4*2380 + 1216 = 10736 milliseconds 
 

The worst-case switching delay (tswitch) equals: 
 
tswitch = 2*2380 + 20 = 4780 milliseconds 
 

The total worst-case delay of the ALIVE protocol (tquery + tswitch) equals: 
 
tquery + tswitch = 15516 milliseconds 
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From the above analysis we conclude that the playout buffer on a mobile 
host in the ALIVE system should be able to buffer about 15.5 seconds of 
multimedia information to deal with switches that takes place under the 
worst circumstances. Buffers of such a size are in line with the amount of 
buffering used by a contemporary media player such as RealPlayer [Li02]. 
However, such amounts of buffer space are usually only required in a small 
small dB region at the very edge of a cell, a point at which it will probably 
also be difficult to execute an IP handoff. Outside this small region, the 
ALIVE protocol will typically introduce a delay that is close to its minum 
value. This is around 56 milliseconds for an unloaded network (see Section 
4.2.3) and about 108 milliseconds for a network loaded with 1 Mbps of 
CBR background traffic (the minimum average one-way delay in a loaded 
network is around 25 milliseconds, see Figure 4-25b). 

4.6 Related Work 

As far as we know, a thorough empirical investigation into the relation 
between SIP retransmissions and 802.11 packet loss parameters has not 
been reported before. Camarillo, Kantola, and Schulzrinne share this 
observation by pointing out that “more work is needed to study interactions 
between lossy links such as some radio interfaces and transport-layer or 
application-layer retransmissions” [Camarillo03]. 

Simulation and analytical approaches do however exist. Curcio et al. 
[Curcio01] used a SIP emulator to measure the delay introduced by SIP 
transaction over lossy wireless LAN links. They focused on telephony 
applications and measured the delay between an INVITE and a 180 Ringing 
(the post dialing delay). They vary radio coverage levels (percentages) and 
the packet loss rate. The exact meaning of a radio coverage level is however 
unclear plus that they do not consider the 802.11 parameters that influence 
their packet loss rate. Banerjee et al. [Banerjee04] take an analytical 
approach and use queuing models to analyze the one-way delay to transmit 
an INVITE from a mobile host to a correspondent host over an 802.11 

Figure 4-25. Average 
INVITE-200 OK delay in 
a network loaded with 
CBR traffic using a retry 
limit of 4. Graph (a) 
shows the average 
delays for all SIP 
transactions, whereas 
(b) shows the average 
delays for transactions 
without any SIP 
retransmissions. 
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link. They vary the frame error rate and the transmission rate of an 802.11 
link as well as the rate at which a mobile host transmits INVITEs. 

The delay introduced by SIP transactions has also been analyzed for 
UMTS networks [Banerjee03, Banerjee04, Curcio02] (analytically and 
through simulations), for UMTS satellite links [Kueh04] (simulations), and 
for the fixed portion of the Internet [Eyers00] (simulations). 

The influence of 802.11 packet loss parameters has been empirically 
studied in other application areas, specifically in the context of multi-hop 
ad-hoc networks [Aguayo04] and the actual streaming of multimedia 
packets [Hoene03]. Their experiments are similar to ours and our results 
seem to be in line with theirs.





 

 

Chapter 5 

5. Conclusions 

We started this thesis with some observations on the complexity in the value chain 
from multimedia content providers (‘sources’) to mobile Internet users. The first 
challenge was to deliver live and scheduled multimedia content to a large number of 
heterogeneous receivers. We tackled this challenge in the design of the ALIVE business 
network, specifically by means of the introduction of aggregators, which form a second 
tier between users and sources. Aggregators deal with heterogeneous receivers by 
transmitting channels in multiple configurations. A configuration consists of a set of 
streams with specific packetization and compression parameters that carry the content 
of a channel. The second challenge was to enable mobile users to seamlessly receive a 
channel while they roam across aggregators and access networks. We addressed this 
challenge in the ALIVE business network in the form of roaming agreements between 
aggregators, as well as in the design of the ALIVE system, in which appropriate 
configurations are negotiated between aggregators and users. We also addressed the 
challenge of seamless mobility in our analysis, where we investigated under which 
802.11 conditions the implementation of the ALIVE protocol on top of SIP yields 
acceptable delays. 

In this chapter, we consider the results of our work on the ALIVE business network 
and the design and analysis of the ALIVE system in more detail (Section 5.1). We 
also make the contributions of this thesis explicit (Section 5.2). We conclude with an 
overview of future work (Section 5.3). 

5.1 Results 

ALIVE Business Network 
In the ALIVE business network, sources deliver multimedia channels to 
heterogeneous receivers (e.g., in terms of the capabilities of mobile hosts or 
the type of network these hosts connect to) through an infrastructure of 
aggregators. Sources can off-load certain tasks to aggregators, which 
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increases the sources’ scalability and reduces their costs (notably 
connectivity costs and subscription management). 

The ALIVE business network furthermore enables sources to distribute 
a multimedia channel through multiple aggregators. Some of these 
aggregators may be bound to specific networks, which allows sources to 
serve specific regions of the Internet. The distribution of a channel through 
multiple aggregators also provides flexibility to end-users because they can 
receive a certain channel from an aggregator of their choice. 

The ALIVE business network is a two-tiered network in that it consists 
of an application-level part (with sources and aggregators) and a network-
level part (with providers of Internet access). While this makes the business 
network more complex, it also provides flexibility advantages because users 
can independently select aggregators and access providers. The two-tiered 
approach is furthermore in line with current trends in content distribution. 

The aggregators in the ALIVE business network can deliver content 
channels (e.g., CNN TV) in various configurations. Aggregators typically 
support a relatively small number of configurations, thus striking a balance 
between per-user personalization of a channel (e.g., delivering the channel 
in a configuration that is tailored to the characteristics of a specific user’s 
mobile host) and no personalization at all (i.e., everybody receiving a 
channel in the same configuration). This approach improves the scalability 
of aggregators, but might result in users receiving a channel in a suboptimal 
configuration (e.g., because their network connections provide some extra 
bandwidth, but not enough to receive the channel in the next higher 
configuration). A course-grained sampling of the spectrum in which an 
aggregator can deliver a channel is furthermore in line with current Internet 
practices in which users can typically receive a multimedia channel at a few 
bitrates. 

To support roaming users, aggregators establish application-level 
roaming agreements amongst each other. These agreements enable users to 
receive channels from multiple aggregators (e.g., at different locations) 
while having a subscription with only a few of them (typically one). 
Application-level roaming agreements define in which configurations a user 
can receive channels from a foreign aggregator and can be considered the 
application-level counter parts of traditional network-level roaming 
agreements. 

ALIVE System 
The ALIVE system enables mobile users to roam in an unrestricted manner 
while continuously receiving a channel. The system transparently switches 
mobile hosts from one aggregator to another and executes handoffs on the 
mobile host’s network interfaces. The system switches a mobile host to the 
aggregator that provides a certain channel in the best configuration, where 
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best is defined by the end-user. This makes the ALIVE system a user-
oriented system. 

The ALIVE system is scalable because most of its logic resides on mobile 
hosts. The system’s operation is policy-controlled, which enables the 
stakeholders to flexibly change the rules that the ALIVE system uses to 
make decisions (e.g., when to look for another available configuration of a 
channel). 

The ALIVE system contains an application-level protocol, which we 
implemented using the Session Initiation Protocol (SIP) and the Session 
Description Protocol (SDP), both of which are Internet standards. We 
deployed our implementation in a testbed with different types of networks, 
which represents the ‘beyond 3G’ Internet environment in which the 
ALIVE protocol is supposed to operate. 

Analysis of the ALIVE System 
The analysis of our implementation of the ALIVE protocol (i.e., its 
implementation based on SIP) provides quantitative information on smooth 
switching, which enables users to seamlessly receive a channel while they 
roam. Our analysis concentrates on the delay introduced by the ALIVE 
protocol in a contemporary wireless Internet environment, specifically 
consisting of 802.11 hotspots and UMTS/GPRS overlays. We focus on the 
operation of the ALIVE protocol right after a handoff to another 802.11 
access provider, which is where the ALIVE protocol typically comes into 
play. After a handoff, the ALIVE system usually first attempts to discover 
the configurations in which the user can receive a channel from the local 
aggregators on the new network. At the edges of 802.11 cells, this may 
result is a significant delay because of packet loss on the link and the 
exponential back-off mechanism that SIP uses to recover from such losses. 

Our analysis consists of two parts: (1) a heuristic analysis of the 
application and network-level delay components involved in a typical switch 
and an estimation of their best-case values, and (2) an empirical analysis of 
the delay introduced by SIP transactions under various 802.11 network 
conditions. In this last part, we used an 802.11b network and varied the 
SNR, the maximum number of 802.11 retransmissions (the retry limit), 
and the amount of competing traffic (constant bitrate). 

In an unloaded network, our experiments show that SIP transactions 
usually introduce little delay at the edge of an 802.11 cell if the retry limit is 
at least two. The only exception is a small region (about 2-3 dB wide) at the 
far end of the cell where the number of SIP transactions that require one or 
more retransmissions increases rapidly. Our experiments furthermore 
suggest that a retry limit of more than two does not significantly reduce the 
delay introduced by SIP transactions in the 2-3 dB region. For a network 
fully loaded with constant bitrate traffic, the effective retry limits are 4 or 6. 



150 CHAPTER 5 CONCLUSIONS                                                

 

This type of information is also relevant for operators of 802.11 networks 
because a larger number of 802.11 retransmissions might affect the queuing 
delays of multimedia packets in the 802.11 MAC.  

Our experiments also show that the influence of background traffic 
alone does not negatively affect the SIP delay with a retry limit of at least 
two. Finally, we have also experimented with the retransmission behavior of 
SIP transactions at different transmission rates, which enables us to 
estimate the edge of the network given a certain transmission rate and SNR. 
This may be useful information for a rate adaptation scheme that tries to 
avoid that a SIP-based application needs to run at the very edge of a 
network.  

5.2 Contributions 

The contributions of this thesis are: 
– A well-defined business network for the distributing live multimedia 

content in a wireless Internet using multiple intermediaries 
(aggregators). A business network like this is lacking in systems with 
objectives similar to the ALIVE system; 

– The design, implementation, and validation of a mobile-controlled 
system that enables mobile hosts to switch to the aggregator that 
provides a channel in the best way and an implementation of it based on 
standard Internet protocols. Similar systems only consider switches 
between proxy servers of the same administrative authority (‘intra-
aggregator switches’) or put most of the system’s responsibility in the IP 
infrastructure; 

– An empirical analysis of the delay introduced by SIP transactions over 
802.11 links under various network conditions. Until now, this has only 
been done though simulations; and 

– Hints on how to dimension an 802.11 network under varying load 
conditions and radio qualities. 

5.3 Future Work 

In this section, we briefly consider future work with respect to the ALIVE 
business network, the system, and our analysis. 

ALIVE Business Network 
The ALIVE business network can be detailed and extended in several ways. 
One possibility to extend the network is to use a hierarchy of aggregators 
(cf. [Chawathe02]) instead of just one layer of aggregators. Other 
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possibilities are to consider the impact accounting on the business network 
(e.g., in application-level roaming agreements) and to study the languages 
that can be used to describe the agreements in the network (e.g., a right 
expression language that sources can use to specify in which ways 
aggregators are allowed to manipulate a channel). Yet another option is to 
consider the use of a ‘universal list of configurations’ from which 
aggregators would pick standardized configurations. 

ALIVE System 
Future work for the ALIVE system is to detail switches between different 
types of media servers (e.g., between a SIP server and an RTSP server) and 
what this would mean for the involved signaling protocols. Another topic 
could be session mobility, in which users transfer an ongoing multimedia 
session from one device to another (e.g., from their smart phone to a flat 
panel television). A further possibility is to investigate the use of media 
servers that can begin to stream a channel at a specified point in time. This 
would assist mobile hosts in executing smooth switches, but also requires 
aggregators to use a delay buffers in case an inbound mobile host wants to 
begin receiving a channel some time ‘in the past’. This topic would also 
require the ALIVE system to be able to discover if media servers support 
this capability. Two final topics are the implementation of the configuration 
notification service (e.g., using SIP eventing [Roach02]) and the design of 
the ALIVE system based on a completely different principle (e.g., thin 
client). 

ALIVE Analysis 
The analysis of the ALIVE protocol could be extended in several 
dimensions. One possibility is to consider the performance of the system 
using different configuration discovery policies (e.g., proactive versus 
reactive) and under different circumstances (e.g., velocity and battery 
drain). Another possibility is to conduct additional experiments, for 
instance in a less controlled environment, using variable bitrate background 
traffic, using multiple hosts at different transmission rates, another interval 
between consecutive SIP transactions, and so on.





 

 

Chapter 1 

6. Samenvatting 

In dit proefschrift behandelen we het efficiënt distribueren van live en 
aangekondigde multimedia stromen (bijvoorbeeld radio- en televisie-
uitzendingen) naar mobiele gebruikers via een grenzeloze Internet 
omgeving. Het doel van dit proefschrift is het ontwerpen en ontwikkelen 
van een content delivery systeem dat (1) eigenaars van live multimedia 
informatie in staat stelt hun informatie af te leveren bij een groot aantal 
heterogene ontvangers en (2) ontvangers in staat stelt bepaalde informatie 
continu te blijven ontvangen, onafhankelijk van hun locatie of het netwerk 
dat ze gebruiken. 

Eerdere studies op het gebied van het efficiënt distribueren van 
multimedia stromen via het Internet laten zien dat het mogelijk is deze 
stromen te verspreiden via een overlay netwerk dat bestaat uit meerdere 
gedistribueerde proxy servers. In dit proefschrift breiden we dit concept uit 
naar het verspreiden van live en aangekondigde multimedia informatie via 
meerdere aggregators. Een aggregator is een intermediair die multimedia 
informatie verzamelt van verschillende zenders en deze informatie 
vervolgens aanbiedt aan mobiele gebruikers. Een aggregator maakt daarbij 
gebruik van een verzameling media servers. 

Doordat dezelfde informatie via meerder aggregators beschikbaar is 
kunnen mobiele gebruikers van de ene naar de andere aggregator schakelen. 
Hierdoor ontvangen mobiele gebruikers dezelfde informatie afwisselend van 
verschillende aggregators.  

Het dekkingsgebied van een aggregator kan beperkt zijn tot een bepaald 
aantal netwerken, wat betekent dat het omschakelen naar een dergelijke 
aggregator vereist dat de mobiele gebruiker ook overgaat naar een netwerk 
dat onderdeel is van het dekkingsgebied van de aggregator. 

Het systeem dat de apparatuur van mobiele gebruikers omschakelt naar 
een andere aggregator is het ALIVE systeem, wat staat voor Aggregator 
Switching System for Mobile Receivers of Live Multimedia Content. We 
richten ons vooral op de ‘front-end’ van het ALIVE systeem, wat bestaat uit 
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mobiele gebruikers van mobiele apparaten, aggregators en draadloze 
netwerken. In het bijzonder richten we ons op de signaleringsinteracties 
tussen mobiele apparaten en aggregators. De details van multimedia 
informatie zelf zijn geen onderdeel van ons werk. 

Het ontwerp van het ALIVE systeem is gebaseerd op het ALIVE business 
netwerk. Dit is een netwerk van business rollen, dat bijvoorbeeld bestaat uit 
rollen zoals ‘aggregator’ en ‘eindgebruiker’. Het netwerk beschrijft de 
relaties die kunnen bestaan tussen de domeinen die betrokken zijn bij het 
verspreiden en ontvangen van live multimedia informatie via meerdere 
aggregators. Het ALIVE business netwerk bestaat uit een applicatie-level 
deel (een overlay die bestaat uit zenders en aggregators van multimedia 
informatie) en een netwerk-level deel (bestaand uit aanbieders van basis 
Internet toegang). Deze opdeling komt overeen met huidige trends op het 
gebied van content distributie. We definiëren de eigenschappen van de 
relaties in het ALIVE business netwerk in de vorm van overeenkomsten. 

Het ALIVE business netwerk gebruikt de notie van een van een kanaal 
voor een bepaald stuk multimedia informatie (bijvoorbeeld een live 
uitzending van het NOS journaal). De aggregators in het ALIVE business 
netwerk kunnen een kanaal in verschillende configuraties aanbieden om zo 
het aantal ontvangers van het kanaal verder te vergroten. Een configuratie 
levert een kanaal op een bepaald perceptueel kwaliteitsniveau en vereist een 
goed gedefinieerde hoeveelheid resources (bijvoorbeeld 
netwerkbandbreedte). Aggregators kunnen er voor kiezen een relatief klein 
aantal configuraties te ondersteunen om zo een balans te creëren tussen 
personalisatie voor individuele gebruikers (bijvoorbeeld door middel van 
configuraties die zijn afgestemd op de huidige bandbreedte beschikbaar 
voor een specifiek mobiel apparaat) en helemaal geen personalisatie 
(iedereen ontvangt een kanaal in één en dezelfde configuratie). 

Aggregators zetten onderling zogenaamde applicatie-level roaming 
overeenkomsten op om mobiele gebruikers te ondersteunen. Deze 
overeenkomsten stellen gebruikers in staat kanalen te ontvangen van 
meerdere aggregators (bijvoorbeeld op verschillende locaties) terwijl ze een 
abonnement hebben met slechts enkele aggregators (typisch één). 
Applicatie-level roaming overeenkomsten definiëren in welk configuraties 
gebruikers een kanaal kunnen ontvangen van aggregators waarbij ze geen 
abonnement hebben (foreign aggregators). 

Een aggregator kan gebonden zijn aan een bepaalde verzameling 
netwerken door middel van binding-overeenkomsten met leveranciers van 
Internet toegang. In het ALIVE business netwerk heet een aggregator die 
betrokken is in een binding-overeenkomst een locale aggregator. De reden 
hiervoor is dat de binding-overeenkomst de beschikbaarheid van de 
aggregator beperkt tot de netwerken van de betrokken Internet leverancier. 
Een leverancier van Internet toegang kan locale aggregators gebruiken om 
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exclusieve kanalen of configuraties van kanalen aan te bieden aan gebruikers 
die via de één van zijn netwerken een verbinding met het Internet maken 
(vergelijk de walled-garden modellen die cellulaire operators tegenwoordig 
typisch hanteren). 

Het ALIVE systeem stelt mobiele gebruikers in staat om zich op een 
onbeperkte manier te verplaatsen terwijl zijn een kanaal ontvangen. Het 
systeem schakelt mobiele apparaten automatisch van de ene aggregator naar 
de andere en verbindt ze met een netwerk waarin de nieuwe aggregator 
beschikbaar is. Dit alles vindt grotendeels transparant voor de eindgebruiker 
plaats. Het systeem schakelt een mobiel apparaat naar een aggregator die 
een bepaald kanaal in de beste configuratie aanbiedt, waarbij ‘de beste’ 
wordt bepaald door de voorkeuren van de gebruiker. Dit maakt het ALIVE 
systeem een gebruikersgeorienteerd systeem. 

Het ALIVE systeem is schaalbaar omdat de meeste intelligentie op 
mobiele apparaten zit (mobiel-gecontrolleerd schakelen). De werking van 
het systeem is daarnaast gebaseerd op policies. Dit stelt de stakeholders in 
het ALIVE business netwerk in staat om op een flexibele manier de regels te 
veranderen die het ALIVE systeem gebruikt om schakelbeslissingen te 
maken (bijvoorbeeld wanneer het systeem op zoek gaat naar een 
alternatieve configuratie voor een bepaald kanaal). 

Het ALIVE systeem bevat een applicatieprotocol dat we hebben 
gerealiseerd met behulp van het Session Initiation Protocol (SIP) en het 
Session Description Protocol (SDP). Beide protocollen zijn Internet 
standaarden. We hebben onze implementatie ingezet in een kleinschalige 
testomgeving met meerdere typen netwerken. Deze netwerken 
representeren de ‘beyond 3G’ Internetomgeving waarin het ALIVE systeem 
zou moeten draaien. 

Middels een analyse van onze SIP implementatie van het ALIVE protocol 
hebben we kwantitatieve informatie verkregen over hoe schakelingen tussen 
aggregators soepel kunnen worden uitgevoerd. Onze analyse richt zich op 
de extra vertraging die het ALIVE protocol introduceert in een hedendaagse 
draadloze Internetomgeving, in het bijzonder een omgeving die bestaat uit 
802.11 hotspots en UMTS/GPRS overlays. We richten ons verder op de 
werking van het ALIVE protocol meteen na een wisseling naar een andere 
802.11 aanbieder omdat dit typisch het moment is waar het ALIVE 
protocol in werking treedt. Na een wisseling van netwerkaanbieder probeert 
het ALIVE systeem namelijk typisch eerst te ontdekken in welke 
configuraties de gebruiker een kanaal kan ontvangen van de locale 
aggregators op het nieuwe netwerk. Aan de randen van 802.11 cellen kan 
dit leiden tot significante vertragingen vanwege het exponentiële back-off 
mechanisme dat SIP gebruikt om te herstellen van pakketverlies. 

Onze analyse bestaat uit twee delen: (1) een heuristische analyse van de 
applicatie- en netwerk-level vertragingscomponenten van een typische 
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aggregatoromschakeling en een schatting van hun waarden, en (2) een 
empirische analyse van de vertraging die SIP transacties introduceren onder 
verschillende 802.11 netwerkcondities. 

Op basis van onze implementatie en onze metingen concluderen we dat 
het ALIVE systeem een realiseerbaar systeem is dat een duidelijke bijdrage 
levert een de visie van ‘multimedia-anywhere’.
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